An Equivalence Between Private Classification and Online Prediction

Mark Bun¹, Roi Livni², Shay Moran³

¹Boston University ²Tel Aviv University ³Technion

Presenter: Yucheng Sun, Jiaqing Xie

< □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

1 Background

2 Online Learning \Rightarrow Global stable learner

3 Global stable learner ⇒Private Learning

Follow-up questions

Which tasks can be learned while protecting private data

Answer: Any task which is online learnable

differential privacy: young area online learning: mature area

A (1) < A (1) < A (1) </p>

Online & Private Learning

Online Learning and Private Learning are closely related.

- "Differential privacy may be ensured for free in online linear optimization" [AS17]
- "DP-inspired stability is well-suited to designing online learning algorithms with excellent guarantees" [Abe+19]
- "Differential privacy is enabled by stability and ensures stability" [DR+14]

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Proof of Equivalence

Two directions:

1) Private Learnable \Rightarrow Online Learnable

2) Online Learnable \Rightarrow Private Learnable

• • = • • = •

1) Private Learnable \Rightarrow Online Learnable

One direction: Private Learnable \Rightarrow Finite Littlestone dimension \Rightarrow Online Learnable

1) Private Learnable \Rightarrow Finite Littlestone dimension \checkmark

"Every approximately differentially private learning algorithm for a class H with Littlestone dimension d requires $\Omega(\log^*(d))$ examples" [Alo+19]

2) Finite Littlestone dimension \Rightarrow Online Learnable \checkmark

"Hypothesis is online learnable iff it has a finite Littlestone dimension" [BPS09]

く 何 ト く ヨ ト く ヨ ト

2) Online Learnable \Rightarrow Private Learnable ?

Another direction: Online Learnable \Rightarrow Finite LittleStone dimension \Rightarrow Private Learnable

1) Online Learnable \Rightarrow Finite LittleStone dimension \checkmark "Hypothesis is online learnable iff it has a finite Littlestone dimension"

2) Finite LittleStone dimension \Rightarrow Private Learnable: If true, then the equivalence is proved.

Idea: introduce stability. We prove 1) Finite LittleStone dimension \Rightarrow Stability \Rightarrow Private Learnable [This paper]

く 何 ト く ヨ ト く ヨ ト

Overview

- Online learning, Littlestone dimension and SOA
- Stability
- Finite Littlestone dimension \Rightarrow Stability
- Differential Privacy
- Stability \Rightarrow Private learnable

• • = • • = •

Table of Contents

2 Online Learning \Rightarrow Global stable learner

3 Global stable learner ⇒Private Learning

Follow-up questions

Yucheng Sun, Jiaqing Xie (ETH)

A B b A B b

Online Learning

Definition (Online Learning)

```
Hypothesis class H = \{h : X \to \{\pm 1\}\}. Examples of inputs (x_1, y_1), ..., (x_n, y_n) \in X \times \{\pm 1\}.
For each time step t
```

- **(**) observe one instance x_t from the examples
- **2** predict the label \hat{y}_t with $h \in H$
- 3 receive the true label y_t
- compute the $loss(\hat{y}_t, y_t)$
- update H with some metrics
- continue till t = n

• • = • • = •

Online Learning

Definition (Goal of Online Learning)

We want to minimize the regret, the number of mistakes compared to the best hypothesis in H:

$$R(n) = \sum_{t=1}^{n} \mathbb{1}[y_t \neq \hat{y}_t] - \min_{h^* \in H} \sum_{t=1}^{n} \mathbb{1}[y_t \neq h^*]$$

Theorem (Boundedness of R(n))

R(n) has been proved to be bounded:

$$\Omega(\sqrt{dn}) \leq R(n) \leq O(\sqrt{dn\log n})$$

where d is the Littlestone Dimension

Online Learnable \Leftrightarrow Finite Littlestone dimension

- 1. Boundedness of $\mathsf{R}(\mathsf{n}) \Leftrightarrow \mathsf{hypothesis}$ class H is online learnable with finite littlestone dimension
- 2. Next step: littlestone dimension and mistake bound

• • = • • = •

Littlestone Dimension

Definition (Mistake bound)

Number of possible mistakes that an online learning algorithm A made during prediction. Let's denote it by $M_A(H)$

Theorem (Upper-Boundedness)

Consistent algorithm returns a |H| - 1 upper bound. Halving algorithm returns a $\log_2 |H|$ upper bound.

Definition (Lower-Boundedness \Rightarrow LittleStone Dimension)

The best achievable lower bound for $M_A(H)$, which is denoted by LDim(H). For any online learning algorithm A, we have:

 $M_A(H) \geq LDim(H)$

< 日 > < 同 > < 三 > < 三 > <

Littlestone Dimension

Intuition:

1) We view online-learning as the game between the gamer and the environment. The environment wants the gamer to make mistakes. Under the settings of a 0-1 binary classification scenario, if a learner picks the prediction y_t , the environment will pick $1 - y_t$

2) How to make maximum mistakes? Answer: Build a complete binary tree where each sample corresponds to one node in the tree. If a prediction given by gamer is 0, then environment would give 1 (right prediction) and travel to left child

3) Example:

Figure: Complete binary tree where LDim = 2 (tree depth T)

Standard Optimal Algorithm (SOA)

Algorithm (Standard Optimal Algorithm)

The best achievable mistake lower bound is achievable by implementing Standard Optimal Algorithm (SOA), where we have:

 $M_A(H) = LDim(H)$

For each time step t

- observe one instance x_t from the examples
- choose b ∈ {±1}, let H' = {h ∈ H : h(x_t) = b}. We predict h' = arg max_b LDim(H')
- I receive the true label yt
- compute the loss
- Update H

イロト イヨト イヨト ・

Standard Optimal Algorithm (SOA)

Definition (Realizable to non-realizable samples)

So far samples could be shattered by $\mathsf{H} \Leftrightarrow \mathsf{Samples}$ are realizable.

- If the incoming sample x_{t+1}, y_{t+1} maintains the realizability, update H by SOA.
- 2 Else:

$$h'(x_{t+1}) = y_{t+1}$$

while keeping other $h'(\cdot)$ unchanged.

Milestone 1: Online Learner

Current:

- Hypothesis with finite Littlestone dimension is online-learnable
- Optimal online-learnable learning algorithm w.r.t. mistake bound model is given by **SOA**

Next step:

- SOA is used in stable learner as an algorithm
- introduce stability

Stability

Definition (Global Stability)

Let n be the sample size and η a stability parameter. Algorithm A is (n, η) globally stable w.r.t D if there exists a hypothesis h s.t.

$$\mathbb{P}_{S\sim D^n}[A(S)=h]\geq \eta$$

Proposition (Global Stable Learner \Rightarrow generalize well)

Suppose A is realizable learner (loss(A(S)) = 0 for any realizable S). D is a realizable distribution s.t. A is (n, η) stable and $\underset{S \sim D^n}{\mathbb{P}}[A(S) = h] \ge \eta$ for a hypothesis h, then

$$loss_D(h) \leq rac{\ln(1/\eta)}{n}$$

Milestone 2: Online + Stable Learner

• A hypothesis class H has a finite LDim d,

• A = SOA , h
$$\in$$
 H, $\mathbb{P}_{S \sim D^n}[SOA(S) = h] \geq \eta$, $loss_D(h) \leq rac{\ln(1/\eta)}{n}$

Intuition:

Proposition (Finite LDim)

Suppose the hypothesis class has a finite LDim d. If we could find specific finite η and n, using SOA, properties of stability and generalization of a stable learner are ensured.

The direction Finite Littlestone \Rightarrow Global stable learner \checkmark

Finite Littlestone \Rightarrow Global stable learner

Theorem

Let H be a hypothesis class with Littlestone dimension $d \le 1$, let $\alpha > 0$, set number of samples

$$n = 2^{2^{d+2}+1} 4^{d+1} \lceil \frac{2^{d+2}}{\alpha} \rceil$$

D is a realizable distribution and $S \sim D^n$, then there exists a randomized algorithm G: $X \times \{\pm 1\} \rightarrow \{\pm 1\}^X$ and a hypothesis $f \in H$: with the following properties:

$$\mathbb{P}[G(S) = f] \geq rac{1}{(d+1)2^{2^d+1}}$$
 and $\mathit{loss}_D(f) \leq lpha$

Distribution \mathcal{D}_k

Q: How are samples randomly chosen from original distribution D ?A: The sampling depends on **tournament samples**Aim: To make sure that each round the algorithm will make a mistake

Algorithm (Choosing D_k)

$$D_{k} = D_{k}(k, n) \text{ are defined by induction on } k:$$

$$D_{0}: \text{ outputs the empty sample } \emptyset \text{ with prob. 1 For each } k:$$

$$Draw S_{0}, S_{1} \sim D_{k-1} \text{ and } T_{0}, T_{1} \sim D^{n}$$

$$f_{0} = SOA(S_{0} \circ T_{0}), f_{1} = SOA(S_{1} \circ T_{1}), \circ \text{ means append}$$

$$If f_{0} = f_{1}, \text{ GOTO } 1$$

$$Pick x \in \{x : f_{0}(x) \neq f_{1}(x)\} \text{ and sample } y \sim \{\pm 1\} \text{ uniformly}$$

$$If f_{0}(x) \neq y, \text{ output } S_{0} \circ T_{0} \circ (\mathbf{x}, \mathbf{y}), \text{ else } S_{1} \circ T_{1} \circ (\mathbf{x}, \mathbf{y})$$

k mistakes were made. $SOA(S \circ T)$ is consistent with T (realizable).

Problem : From 1) to 3), it might generate infinite number of samples (unbounded) from D.

 ${\bf Solution}$: In order to circumvent being stuck in the sampling period, if more than N examples are sampled from D, break immediately and output Fail.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Milestone 3: Prove Finite littlestone dimension \Rightarrow Stability

Finite littlestone dimension \Rightarrow Stable learner

- prove stability
- prove stability \Rightarrow generalization
- prove number of generated samples is finite
- Optimal f^* in hypothesis that looses the lower bound

Existence of Frequent Hypothesis

Lemma (global stability)

There exists $k \leq LDim \ d$ and an hypothesis $f : X \rightarrow \{\pm 1\}$ s.t.

$$\mathbb{P}_{\substack{S \sim D_k, T \sim D^n}}[SOA(S \circ T) = f] \ge \eta = 2^{-2^{d+2}}$$

<日

<</p>

Proof: Existence of Frequent Hypothesis (Skip)

Sketch Proof (by contradiction):

1) Suppose
$$\mathbb{P}_{S \sim D_d, T \sim D^n}[SOA(S \circ T) = f] < 2^{-2^{d+2}}$$

2) ρ_k : prob. that all k tournament examples are consistent with c where c is the target concept.

3) two cases: $S_0, S_1 \in D_{k-1}$ are all consistent with c, therefore, each ρ_{k-1} leads to ρ_{k-1}^2 . And $f_0 \neq f_1$. We have that $\mathbb{P}[f_0 = f_1] < 2^{-2^{d+2}} < 8 \cdot 2^{-2^{d+2}}$ according to 1).

4) conditioned on uniformly distributed y with prob 1/2. put it all together it will produce:

$$\rho_k \ge \frac{1}{2}(\rho_{k-1}^2 - 8 \cdot 2^{-2^{d+2}})$$

(人間) トイヨト イヨト ニヨ

Proof: Existence of Frequent Hypothesis (Skip)

(Continue)

5) $\rho_0 = 1$, we can prove by induction that for $k \le d$, $\rho_k \ge 4 \cdot 2^{-2^{k+1}}$ Suppose it stands for k-1, then for k

$$\rho_k \ge \frac{\rho_{k-1}^2 - 8 \cdot 2^{-2^{d+2}}}{2}$$

$$\ge \frac{(4 \cdot 2^{-2^k})^2 - 8 \cdot 2^{-2^{d+2}}}{2}$$

$$= 8 \cdot 2^{-2^{k+1}} - 4 \cdot 2^{-2^{d+2}}$$

$$> 4 \cdot 2^{-2^{k+1}} \text{ since } k < d$$

6) so $\rho_k \ge 2^{-2^{d+2}}$. SOA does not make more than d mistakes, so if all tournament examples are consistent with c then $SOA(S \circ T) = f$, then $\mathbb{P}_{S \sim D_d, T \sim D^n}[SOA(S \circ T) = f] \ge 2^{-2^{d+2}}$, contradicts 1)

Proof

Finite littlestone dimension \Rightarrow Stable learner

- prove stability \checkmark
- prove stability \Rightarrow generalization
- prove number of generated samples is finite
- Optimal f* in hypothesis that looses the lower bound

A B M A B M

Generalization

Lemma (Generalization)

Let k be such that D_k is defined. Then every f s.t.

$$\mathbb{P}_{S \sim D_k, T \sim D^n}[SOA(S \circ T) = f] \ge 2^{-2^{d+2}}$$

satisfies

$$loss_D(f) \leq \frac{2^{d+2}}{n}$$

Yucheng Sun, Jiaqing Xie (ETH)

э

イロト 不得下 イヨト イヨト

Proof: Generalization (Skip)

Sketch Proof (similar to generalization proof before):

1) A be the event that $SOA(S \circ T) = f$, by definition $\mathbb{P}[A] \ge 2^{-2^{d+2}}$ 2) B be the event that f is consistent with T, by definition $\mathbb{P}[B] = (1 - \alpha)^n$ again if we let $\alpha = loss_D(f)$ 3) We've mentioned when $SOA(S \circ T) = f$, then f must be consistent with T. So that $A \subseteq B$ 4) solve the inequality: $2^{-2^{d+2}} \le (1 - \alpha)^n \le e^{-\alpha n}$ leads to the generalization bound.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proof

Finite littlestone dimension \Rightarrow Stable learner

- prove stability \checkmark
- prove stability \Rightarrow generalization \checkmark
- prove number of samples is finite
- Optimal f* in hypothesis that looses the lower bound

A B A A B A

Expected Sample Complexity

Lemma

Let k be s.t. D_k is well-defined. M_k denotes the number of examples of D drawn in the process of generating $S \sim D_k$. Then:

$$\mathbb{E}[M_k] \leq 4^{k+1} \cdot n$$

, where n is the number of inputs.

Proof skipped here.

Algorithm G

Algorithm

- Consider the distribution \hat{D}_k , where $n = \lceil \frac{2^{d+2}}{\alpha} \rceil$ (From generalization bound)
- Sampling upper bound is set to 2^{2^{d+2}+1}4^{d+1} ⋅ n. Inverse of stability bound times 𝔼[M_k]
- Draw $k \in \{0, 1, ..., d\}$ uniformly at random
- Output $h = SOA(S \circ T)$, $S \sim \hat{D}_k$, $T \sim D_n$

く 何 ト く ヨ ト く ヨ ト

Proof

Finite littlestone dimension \Rightarrow Stable learner

- prove stability \checkmark
- prove stability \Rightarrow generalization \checkmark
- prove number of generated samples is finite \checkmark
- Optimal f^* in hypothesis that looses the lower bound

• • = • • = •

Put all things together

We leave : there exists a f such that :

$$\mathbb{P}_{\substack{S\sim\hat{D}_k, T\sim D^n}}[SOA(S\circ T)=f]\geq \frac{2^{-2^{d+2}}}{d+1}$$

and

$$loss_D(f) \leq \alpha$$

We already achieved the sample size $n = 2^{2^{d+2}+1} 4^{d+1} \cdot \lceil \frac{2^{d+2}}{\alpha} \rceil$.

(4回) (4回) (4回)

Proof

Assume optimal k^{*} and f = f^{*}, we have loss_D(f^{*}) ≤ loss_D(f) = α
Markov's inequality:

$$\mathbb{P}[M_{k^*} > 2^{2^{d+2}+1}4^{d+1} \cdot \lceil \frac{2^{d+2}}{\alpha} \rceil] \le 2^{-2^{d+2}-1}$$
•
$$\mathbb{P}_{S \sim \hat{D}_{k^*}, T \sim D^n}[SOA(S \circ T) = f^*] = \mathbb{P}_{S \sim D_{k^*}, T \sim D^n}[SOA(S \circ T) = f^* \text{ and } M_{k^*} < 2^{2^{d+2}+1}4^{d+1} \cdot \lceil \frac{2^{d+2}}{\alpha} \rceil] \ge 2^{-2^d-1} \ge 2^{-2^{d+2}-1}$$
• $k = k^*$ with probability $\frac{1}{d+1}$. Finish the proof.

э

Proof

Finite littlestone dimension \Rightarrow Stable learner \checkmark

- prove stability ✓
- prove stability \Rightarrow generalization \checkmark
- prove number of generated samples is finite \checkmark
- Optimal f^* in hypothesis that looses the lower bound \checkmark

く 何 ト く ヨ ト く ヨ ト

Table of Contents

1 Background

2 Online Learning \Rightarrow Global stable learner

3 Global stable learner \Rightarrow Private Learning

Follow-up questions

A B b A B b

Differential Privacy (General definition)

Definition

A randomized algorithm $\mathcal{M}: \mathcal{X}^n \to \mathcal{R}^k$ is said to be (ϵ, δ) -differentially private if for all measurable $S \subseteq \mathcal{R}^k$ and all neighboring datasets $x, y \in \mathcal{X}$:

$$\mathsf{Pr}(\mathcal{M}(x)\in S)\leq \mathsf{e}^\epsilon\,\mathsf{Pr}(\mathcal{M}(y)\in S)+\delta\,,$$

where two datasets x, y are said to be *neighboring* if they only differ in one entry.

I.e., an attacker cannot confidently infer whether a sample is in the input dataset given the output of the algorithm.

When (ϵ, δ) decrease, the level of privacy increases.

< 同 ト < 三 ト < 三 ト

Two nice property of differential privacy

Theorem (Post-processing)

Let $\mathcal{M}: \mathcal{X}^n \to \mathcal{R}^k$ be an (ϵ, δ) -differentially private algorithm. Let $f: \mathcal{R}^k \to \mathcal{R}^k$ be an arbitrary mapping. Then $f \circ \mathcal{M}$ is also (ϵ, δ) -differentially private.

Theorem (Composition theorem)

Let $\mathcal{M}_1: \mathcal{X}^n \to \mathcal{R}^k$ be an (ϵ_1, δ_1) -differentially private algorithm and $\mathcal{M}_2: \mathcal{X}^n \to \mathcal{R}^k$ be an (ϵ_2, δ_2) -differentially private-algorithm, then their combination $M_{1,2}(x) = (\mathcal{M}_1(x), \mathcal{M}_2(x))$ is $(\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)$ -differentially private.

Global stable learner \Rightarrow Private Learning

To prove this statement, the paper constructs a private learner

Constructed using existing algorithms as black boxes

Building block 1: Generic Private Learner [Kas+08] Building block 2: Stable Histograms [Kor+09; BNS19]

Generic Private Learner

Theorem

Let $H \subseteq \{\pm 1\}^X$ be a collection of hypothesis. For

$$n = O\left(rac{\log(|H|) + \log(1/eta)}{lpha \epsilon}
ight)$$

there exists an (ϵ, δ) -differentially private algorithm GenericLearner : $(X \times \{\pm 1\})^n \to H$ such that the following holds. Let D be a distribution over $(X \times \{\pm 1\})$ such that there exists $h^* \in H$ with $loss_D(h^*) \leq \alpha$. Then on input $S \sim D^n$, algorithm GenericLearner outputs, with probability at least $1 - \beta$, a hypothesis $\hat{h} \in H$ such that $loss_D(\hat{h}) \leq 2\alpha$.

伺 ト イヨト イヨト

Stable Histogram

Theorem (Stable Histogram)

Let X be any data domain. For

$$n \geq O\!\left(rac{\log(1/\etaeta\delta)}{\eta\epsilon}
ight)$$

there exists an (ϵ, δ) -differentially private algorithm Hist which, with probability at least $1 - \beta$, on input $S = (x_1, ..., x_n)$ outputs a list $L \subset X$ and a sequence of estimates $\alpha \in [0, 1]^{|L|}$ such that

- Every x with freq $S(x) \ge \eta$ appears in L and
- For every $x \in L$, the estimate a_x satisfies $|a_x freqS(x)| \le \eta$

Construction of a private learner

Algorithm

Require: Stable learner G, Stable Histogram algorithm Hist, generic learner GenericLearner

Step 1. Let $S_1, ..., S_k$ each consist of m i.i.d. samples from D. Run G on each batch of samples producing $h_1 = G(S_1), ..., h_k = G(S_k)$.

Step 2. Run the Stable Histogram algorithm Hist on input $H = (h_1, ..., h_k)$ using privacy parameters $(\epsilon/2, \delta)$ and accuracy parameters $(\eta/8, \beta/3)$, producing a list L of frequent hypotheses.

Step 3. Let S' consist of n' i.i.d. samples from D. Run GenericLearner(S') using the collection of hypotheses L with privacy parameter ($\epsilon/2, 0$) and accuracy parameters ($\alpha/2, \beta/3$) to output a hypothesis \hat{h} .

イロト 不得 トイヨト イヨト

Proof of correctness

To prove the correctness of the algorithm, one need to prove:

- **1** The algorithm is (ϵ, δ) private.
- 2 The algorithm is accurate.

< 回 > < 回 > < 回 >

Proof of correctness (privacy part)

Proof.

We know Step 2 is $(\epsilon/2, \delta)$ -differentially private, Step 3 is $(\epsilon/2, 0)$ -differentially private. By using composition theorem, we can immediately prove the algorithm is $(\epsilon/2 + \epsilon/2, \delta)$ -differentially private.

Proof of correctness (accuracy part)

Proof.

Assume the optimal classifier is h^* and $loss_D(h^*) = \alpha/2$.

1. Using standard generalization argument, one can show that w.p. at least $1 - \beta/3$,

$$|\mathsf{freq}_{\mathsf{H}}(h) - \Pr_{S \sim D^m}[G(s) = h]| \leq rac{\eta}{8}$$

for every $h \in \{\pm 1\}^X$ as long as $k \ge O(\log(1/\beta)/\eta)$. 2. Conditioning on 1. By the correctness of the Stable Histogram algorithm, we know w.p. $1 - \beta/3$ HIST produces a list *L* containing h^* with the estimate $a_{h^*} \ge \eta - \eta/8 - \eta/8 = \frac{3}{4}\eta$. 3. By the correctness of private generic learner, *GenericLearner* can successfully find $\hat{h} \in L$ and $loss_D(\hat{h}) \le \alpha$.

By using the union bound, we know the algorithm successfully find a correct solution w.p. $1-\beta.$

3

(日)

Global stable learner \Rightarrow Private Learning (formal statement)

Theorem

Let H be a concept class over data domain X. Let $G: (X \times \{\pm 1\})^m \to \{\pm 1\}^X$ be a randomized algorithm such that, for D a realizable distribution and $S \sim D^m$, there exists a hypothesis h such that $Pr[G(S) = h] \ge \eta$ and $loss_D(h) \le \alpha/2$. Then for some

$$n = O\left(rac{m\log(1/\etaeta\delta)}{n\epsilon} + rac{\log(1/\etaeta)}{lpha\epsilon}
ight)$$

there exists an (ϵ, δ) -differentially private algorithm $M : (X \times \{\pm 1\})^m \to \{\pm 1\}^X$ which, given n i.i.d. samples from D, produces a hypothesis h[^] such that $loss_D(\hat{h}) \leq \alpha$ with probability at least $1 - \beta$.

Table of Contents

1 Background

- 2 Online Learning \Rightarrow Global stable learner
- 3 Global stable learner ⇒Private Learning

4 Follow-up questions

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

The upper bound on the differentially private sample complexity of a class H has a double exponential dependence on its Littlestone dimension Ldim(H)

[Alo+19] proved a lower bound which depends on log(Ldim(H))

Can every class H be privately learned with sample complexity poly(VC(H), log(Ldim(H)))?

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

Study of global stability

This paper introduced global stability as a definition of stability, and showed its connection to differentially privacy

Its natural to wonder whether global stability has connection with other definitions of stability

For example, [CMY23] viewed stability as a variant of replicability, and created a variant called list replicability, which has an algorithmic equivalence to global stability

・ 同 ト ・ ヨ ト ・ ヨ ト

Extension to multi-class classification and regression

It is natural to ask whether this equivalence holds for multi-class classification and regression problem

[JKT20] showed Private Learnable \Rightarrow Online Learnable. But it is hard to show Online Learnable \Rightarrow Private Learnable

Supplementary 1

Proposition (Stable Learner \Rightarrow generalize well)

Suppose A is realizable learner (loss(A(S)) = 0 for any realizable S). D is a realizable distribution s.t. A is (n, η) stable and $\underset{S \sim D^n}{\mathbb{P}}[A(S) = h] \ge \eta$ for a hypothesis h, then

$$loss_D(h) \leq rac{\ln(1/\eta)}{n}$$

Sketch Proof:

1) let $\alpha = loss_D(h)$. Since A is realizable, then A(S) = h means that $\exists h$ s.t. h is realizable 2) $\mathbb{P}[h \text{ is realizable}] = (1 - \alpha)^n$. The probability that h correctly classifies the sample is equal to $1 - \alpha$. All n independent samples so $(1 - \alpha)^n$ 3) $\underset{S \sim D^n}{\mathbb{P}}[A(S) = h] \Rightarrow \mathbb{P}[h \text{ is realizable}]$, so $\eta \leq (1 - \alpha)^n$. With the inequality $1 - \alpha \leq e^{-\alpha} \Rightarrow \eta \leq e^{-n\alpha} \Rightarrow \alpha \leq \frac{1}{n} \ln(\frac{1}{\eta})$

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A