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Abstract
Variational inference (VI) can usually be used to simulate a complex posterior distribu-
tion. Using automatic differentiation in VI facilitates inference as optimization since it
does not require specifying an importance distribution, which is implemented in Pyro
as autoguides. Pyro’s two simplest autoguides are based on the full-rank and mean-field
assumptions. However, the mean-field assumption does not account for dependent
variables while full-rank assumptions lack the enrichness choices of covariance matri-
ces, which may compromise inference performance. In this project, we developed six
different covariance matrices based autoguides. We proposed another two autoguides
based on the inverse model dependencies to guide the poesterior more accurately. We
have evaluated our new autoguides on different datasets, the degree of improvement
when using new autoguides, and the relevant scenarios for the autoguides. In gen-
eral, the autoguide based on a covariance matrix is appropriate for low dimensional
tasks, whereas the autoguide based on an inversed dependency model is appropriate
for high dimensional tasks with enriched dependency structures. It is important to note
that autoguides are not suitable for many deep generative models such as variational
encoders.
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Chapter 1

Introduction

1.1 Motivation

Analyzing latent variables or distribution parameters from observed data is the central
question of inference. The problem is also referred to as posterior estimation. Studies
have been conducted on solving the inference problems either using sampling methods
[1, 2, 3], or variational inference [4, 5, 6, 7, 8, 9]. The majority of variational inferences
make use of mean-field or full-rank assumptions [10]. According to the mean-field
assumption, latent variables are independent of each other, while the full-rank assump-
tion extends this by using Cholesky factorization [11] and extending the covariance
matrix to be unconstrained by positive definite requirements. Both of these methods
have been implemented in Pyro, a mainstream programming language, as a form of au-
toguide. Essentially, they use the automated differentiation during variational inference
(ADVI) method [12]. When autoguides are used, each model’s original parameters are
transformed into a Gaussian latent space.

The two previous autoguides have some drawbacks. Taking the mean-field approach
might lead to a loss of latent variable dependencies. Assuming the full-rank situation, we
will always have to perform Cholesky factorization with inserting it into the parameter
scale tril of the Gaussian distribution. It removes the positive definite requirement, but
neglects the importance of different kinds of special covariance matrices. Therefore,
we aim at extending the covariance matrix group of autoguides as well as getting the
inverse dependency by either using faithful inversion [13] or stochastic inverse [4] of the
model dependencies to create new autoguides. Though AutoStructured is implemented,
the node order is given in an unconvincing reversed order that might lose dependency
information at higher dimensions. In order to construct a convincing dependency-based
guide, there is a need to present it in a more structured manner.

1.2 Objectives

This project is primarily intended to build new autoguides and perform inference tests
on different datasets and models. The objectives of this project are,
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Chapter 1. Introduction 2

• To design autoguides using various covariance matrices

• To design autoguides using inverse dependency models

• To test those new autoguides on different datasets, observe the loss, and report
the latent variable patterns in several models and datasets

• To generalize the autoguides’ usage range by comparing them to other baseline
autoguides or just simple guides.

1.3 Main contributions

Contributions to this project are as follows:

• I contributed eight new autoguides, including six based on covariance matrices,
and two others based on different inverse dependency models, including topo-
logical ordering of the graph and minimum distance ordering given the observed
node.

• I compared the performance of different autoguides on different datasets, and
combined them with images to explain why some parameters did not fit, the limi-
tations of generating new data using posterior probabilities, and some potential
tradeoffs.

• I reviewed a lot of literature on variational inference as well as advanced algebra
books, with a more thorough and detailed description of the background and
method part, finally translating the theory to code.

1.4 Report outlines

The following is the order in which I organize this dissertation:

• Chapter 1 outlines project’s goals, main objectives, and main personal contribu-
tions to the project.

• Chapter 2 introduces the fundamentals of the project, including Bayesian infer-
ence, variational inference, probabilistic programming, and Bayesian networks.

• Chapter 3 describes the sources of autoguide, as well as improvements based on
inversed model dependencies, covariance matrices, and RNN autoguide.

• Chapter 4 describes how some of our improved methods developed in chapter 3
are applied to the datasets used of inference and how some rules and conclusions
about the use of autoguides are formulated.

• Chapter 5 summarizes the results of implementations, discusses the deficiencies,
suggests some improvements to be made in the future work, and summarizes the
whole project.



Chapter 2

Background

Chapter 2 has provided the basic understanding of the project’s fundamentals and we
will discuss: 1) an explanation of inference problems and some real-world examples
2) what Bayesian inference is and its pros and cons 3) what methods have been used
to improve Bayesian inference; 4) a guide to variational inference 5) probabilistic
programming as a tool to translate theory into practice 6) the relationship between
Bayesian networks and inference 7) Bayesian network representation with probability
distributions.

2.1 What is inference

Understanding what a hypothesis is is the first step to understanding inference. We are
affected by the weather conditions on a daily basis. If nothing happens, rain is predicted
to occur 50% of the time. Thus, a hypothesis can be defined mathematically as the
probability that a probabilistic event occurs without given conditions. A rainy day and a
non-rainy day are two distinct events, which means 50% probability individually. The
probability of rain could be higher than 60% or 70%, however, if the sky is cloudy
because weather conditions are given, so we will make different probability predictions
based on the weather. In this case, inference can be defined mathematically as the
modification of the original hypothesis probability based on the conditions (data), that
is, the probability resulting from the conditions. However, conditional probabilities do
not always constitute inferences. The general rule is that premises are inferred from
results.

Here is another classic example of inference that can help understand it, which is cancer
diagnosis. The probability of cancer occurring is extremely small, with a less than 1%
chance recorded. Considering this scenario, we would like to know if the chances of
getting cancer, even if we test positive, are still that small. Patients that suffer from
cancer are assumed to have a positive test rate of 99%, while those who are not affected
have a negative test rate of 99%. Using the joint probability distribution formula, the
probability of both having this disease and testing positive is 0.99%. The marginal
probability calculation formula (to simplify, it will not be expanded in detail) claims
a positive rate of 10.9%, so the conditional probability that patients are diagnosed as
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Chapter 2. Background 4

positive but still suffer from the cancer is only 8.33%. It is very rare to be diagnosed
with cancer by being positive. In other words, the risk of cancer itself is small, and it is
also unnecessary to worry even if being tested positive.

2.2 Bayesian inference

2.2.1 Concepts

As described in 2.1, both examples fall within Bayesian inference. Generally, Bayesian
statistical inference problems aim to learn unobserved variables from observed variables.
This includes exploring confidence intervals and estimating latent variable distributions
from observed data in the field of statistics. As more evidence and information become
available, the probability of a particular hypothesis can be updated continuously. Here
we abstract data and hypotheses into symbolic representations and write out a general
form of Bayesian inference.

We posit observed data X and unobserved patterns Z. As the center of a statistical
inference problem, one has to determine how to infer the underlying pattern of z ∈ Z
from unlabeled x ∈ X . Bayesian inference describes such inference dependency as a
posterior probability distribution. Suppose that θ is a shared parameter for sets X and
Z, along with a probability function p(Z|X ;θ) that maps the variable x from original
parameter space to latent (variable) space. The classic Bayes’ theorem describes an
inference problem as follows:

p(Z|X ;θ) =
p(X |Z;θ)p(Z;θ)

p(X ;θ)
(2.1)

Our hypotheses in 2.1 p(Z;θ) are referred to as a prior probability distribution, whereas
p(X |Z;θ) is our conditional probability distribution. There is prior knowledge of
domain experts to estimate p(Z;θ) and p(X ;Z,θ). The decision on these two models
is therefore subjective. Models may vary from scenario to scenario, but they are already
known before any inference is made. We can present this marginal probability p(X ;θ)
in an integral form if z is continuous in space Z:

p(X ;θ) =
∫

z
p(X |z ∈ Z;θ)p(z ∈ Z;θ)dz (2.2)

Bayesian inference has the following advantages:

• Using the posterior as a prior for new parameter updates, only a few new observa-
tions are required.

• It is the foundation for all inference methods.

• Different prior inference designs can get the same likelihood function, where it
can be interpreted easily.

But it also has some obvious shortcomings:

• Prior can’t be generalized and must be designed in independent cases.
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• Posterior is heavily dependent on prior design.

• Calculating such integral (equation 2.2) is intractable in high-dimensional vector
spaces for Z and sometimes we can’t achieve an analytical solution. Even if we
can calculate it, it has a high computation cost.

2.2.2 Extension on Bayes

The integration problem in equation 2.2 can be approached in two ways. The first
approach is to use sampling simulations. We discuss sampling in this section and a
variational approach to approximating the posterior distribution in 2.3. Stochastic simu-
lation poses the problem of generating samples for a probability distribution p(x). The
generation of samples may be difficult when p(x) has a complex distribution or when
p(x) is a high-dimensional distribution, it is required to use more complex random sim-
ulation methods. Three different methods for sampling have been discussed: (MCMC)
sampling, MH sampling, and Gibbs sampling. Despite the fact that algorithms and
concepts of sampling are not the primary focus of the project, I will explain them here
for completeness’ sake.

MCMC sampling [2] Two of the concepts introduced by MCMC sampling are Monte
Carlo simulations and Markov Chain models. According to certain probabilistic rules,
a Markov chain experiences state transitions. One of the most important properties
is that the probability of state transition is determined solely by the previous state.
According to the convergence theorem, the probability distribution of a Markov Chain
will converge itself to a stationary distribution. Based on the assumption that after n
steps of convergence, the transition sequences after n steps will all be samples of a
stationary distribution. When n reaches an infinite value, it will no longer be related to
nodes or time. To satisfy the above detailed stationarity conditions, we need to construct
the following transition matrix P that it satisfies:

π(i)P(i, j) = π( j)P( j, i) (2.3)

where π(i) is the stationary distribution of P(i, j). For the above formula to hold
generally, an extra α(i, j) is introduced, which is also referred to as an acceptance rate
since the equation 2.3 does not always hold:

π(i)P(i, j)α(i, j)︸ ︷︷ ︸
new P’(i,j)

= π( j)P( j, i)α( j, i)︸ ︷︷ ︸
new P’(j,i)

(2.4)

Using the sample xt , we could sample a x∗ from the original transition matrix at time
t. The acceptance rate would then be α(xt , x∗). The uniform distribution U ∼ (0,1) is
supposed and a random value u is sampled from this distribution. The transition from xt
to x∗ will be accepted if this value is less than acceptance rate. Otherwise, at time t-1, it
will still have the same sample. The integral can then be transformed into a summation
over a series of finite samples sampled from stationary distributions.

MH sampling [3] Likewise, MH sampling is based on the state transition of the Markov
chain, but Metropolis [3] designed a new sampling method to optimize MCMC sampling.
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The acceptance rate α(i, j) may be too low, resulting in low sampling efficiency. In
other words, sampling once is likely to reject a state transition, which may not lead to
convergence. Hence, we adjust the acceptance rate as follows:

α(xt ,x∗) = min{π( j)P( j, i)
π(i)P(i, j)

,1} (2.5)

The advantage of this modification is that it increases the value of the acceptance rate,
which in turn increases the probability of a state being transited. There are, however,
two problems associated with MH sampling. In first place, calculating the acceptance
rate at high dimensions is inefficient for datasets with too many features. In addition,
researchers are still not satisfied with the acceptance rate. Ideally, the probability of a
state transition occurring at the next moment should be 100%.

Gibbs sampling [1] Gibbs sampling then solves both of these issues. For Gibbs
sampling, the stationary condition is met by using point transitions. Consider a 2-
dimensional dataset with variables x1 and x2. Therefore, the sampling value at time
t-1 would be xt−1

1 and xt−1
2 . To determine the new value of xt

2, the sampling of xt
2

can be calculated from the value of x1 at time t-1 based on its conditional probability
distribution. The sampling of xt

1 is based on xt
2 and its conditional probability on xt

2.
These two values {xt

1, xt
2} represent new sampling values of the distribution at time t.

Higher dimension situations imply the following: one point is sampled based on the
sample values of all the other points at the previous moment and the other points are
sampled based on the sample values of some points at this moment, or the moment
according to the dependencies between the states. During the sampling process, all
other points are fixed, which is similar to the coordinate gradient (axis) descent method
[14]. Alternatively, this type of sampling technique can be called cyclic sampling.

2.3 Variational inference

2.3.1 Concepts

In addition to sampling, variational inference (VI) is another important method to solve
the Bayesian posterior integration problem [15]. To begin, we introduce the notion of
conjugate distributions, where the posterior is in the same distribution group as the prior,
or in other words, they exhibit the same form. This is best illustrated by a Gaussian dis-
tribution. In the case of a prior Gaussian distribution, the posterior distribution must also
be Gaussian. Therefore a Gaussian distribution can be constructed to approximate this
posterior Gaussian distribution, which is also known as the Gaussian approximation.
The Dirichlet distribution is used to infer the parameters of a multinomial distribution,
and the categorical distribution is used to infer discrete variables. VI considers how
to approximate intractable distributions. The problem is generalized that given any
posterior distribution p(Z|X), where Z is set of the latent variables and X is a group of
data, if an approximated distribution q(Z) can be found so that it is close to p(Z|X).
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2.3.2 Optimization problem

Variational methods are based on optimization problems and allow for approximate
inference. This is an optimization problem because we must constantly approximate
the true distribution with approximate distributions, and the key to optimization is to
reduce the difference between distributions. It is aimed at determining an approximate
posterior distribution p(Z|X ;θ) with q(Z;φ)∈ Q [15] by implementing KL-divergence
loss function:

q(Z;φ) = argmin
q(Z;φ)∈Q

(KL(q(Z;φ)||p(Z|X ;θ))) (2.6)

, where Q is a space containing a set of possible approximation distributions. KL is an
abbreviation for Kullback-Leibler divergence, also referred to as relative entropy in
the context of information systems, and is often used to describe the difference between
two distributions. We can measure the difference between approximated probability
distribution q(Z;φ) and real probability distribution p(Z|X ;θ) in terms of an integral
form [15] where we assume that the parameter φ is the parameter to Z merely:

KL(q(Z;φ)||p(Z|X ;θ)) =
∫

z
q(Z;φ)log

p(Z|X ;θ)

q(Z;φ)
dz (2.7)

Optimally, q(Z;φ) = p(Z|X ;θ), where the value of KL-divergence becomes zero under
this circumstance since the log term will become zero. But actually KL-divergence will
never reach zero and will also experience diverging during optimization step, The value
of KL(·) is always larger than zero which can be proved by Jensen’s Inequality theorem
[15]. We can rewrite the equation 2.6 in the form of evidence lower bound (ELBO)
[15]:

KL(q(Z;φ)||p(Z|X ;θ)) =−ELBO(X ;θ;φ)+ log(p(X ;θ)) (2.8)

A couple of reasons have led to the emergence of ELBO. The first reason is due to the
fact that the calculation of KL divergence still includes the calculation of the posterior
distribution, making the calculation difficult. It is found that using ELBO, only the
approximate distribution and the previously known joint probability distribution in the
calculation formula make it easier to deal with the approximate distribution, such as
differential or integral of variables. Additionally, the distributed maximum likelihood
estimation (MLE) and KL loss do not seem to be linked directly, whereas, the ELBO
is related with MLE. The ELBO represents the upper limit of the joint probability
distribution (according to Jensen’s inequality) and our optimization process maintains
the ELBO close to this upper limit. In other words, KL loss is usually calculated by
subtracting these two indicators, which means that KL loss cannot be calculated directly.

Minimization of KL-divergence in equation 2.7 is equivalent to the maximization
of ELBO since calculating p(X ;θ) is independent of q(Z;φ) as mentioned. Current
methods are solving how to optimize ELBO. ELBO can also be rewritten as:

ELBO(x;θ,φ) = Eq(Z;φ)log
p(X ,Z;θ)

q(Z;φ)
(2.9)

= Eq(Z;φ)log(p(X |Z;θ))−KL(q(Z;φ)||p(Z|X ;θ)) (2.10)

The equation is easier to understand now since the first term can be regarded as a
likelihood function after reconstructing the original space from the latent space. The
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equation functions as a loss function during actual training in some models such as
variational auto-encoders [5], and graph variational auto-encoders [6]. In part 2.3.4,
various variational inference methods are illustrated.

2.3.3 Variational expectation maximization

Maximum likelihood solutions can be found using an expectation maximization al-
gorithm for probabilistic models with latent variables. The general EM algorithm
can be brought into VI to demonstrate the relationship between ELBO and maximum
likelihood. It can also demonstrate how to find the best variational distribution q and
optimal distribution parameters.

A typical EM procedure consists of two steps, in which the first step is to keep the
parameters fixed. ELBO maximizes the log likelihood of the joint probability distri-
bution by maintaining the distribution parameters and θ unchanged. In this case, the
posterior probability equals the variational distribution q. During the second step of
maximization, the variational distribution q is fixed, and θ is optimized. When the
variational distribution is not too complicated, the EM algorithm is very efficient in
training.

2.3.4 Forms of variational inference

Mean-field Assumption Measuring the mutual interaction between zi ∈ Z and z j ̸=i ∈ Z
is difficult where Bayesian networks cannot represent the conditional probabilities.
A classical assumption about variational inference is that the variational posterior
distribution is an entirely decomposable distribution:

q(Z;φ) =
m

∏
i=1

qi(zi) (2.11)

where zi and z j ̸=i are independent and identically distributed. It ignores inference
networks’ enrich structures, losing the variational distribution’s flexibility. One possible
substitution is to add auxiliary variables as the conditions of φ in latent space. Based on
this idea, many works sought to minimize the gap between true posteriors and approxi-
mate posteriors, such as structured stochastic variational inference [16], inference with
auxiliary variables [17], variational Gaussian process [18], Copula variational inference
[19], and hierarchical variational models [20].

Gradient Descent Because the space of parameters and the space of distributions are
different, stochastic gradient descent directly does not produce good results [4]. In
order to improve SGD, the natural gradient stated in information geometry is used,
and the so-called stochastic variational inference (SVI) is proposed [4]. The second-
order derivative (Hessian) information is the essence of SVI. The SVI mainly discusses
models with mean-field and conjugacy assumptions. The advantage of these models
is that the Hessian is easy to calculate and has an explicit form, but for more complex
models, calculating the Hessian will greatly increase the computational complexity of
the algorithm. Pyro takes SVI as the main optimized methods [21].
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Reparameterization Tricks We perform the gradient descent to the equation 2.6, which
will lead to:

∇φELBO(x;θ,φ) = Eq(Z;φ)[∇φlog(q(Z;φ))log
p(X ,Z;θ)

q(Z;φ)
]

(2.12)

The stochastic gradient descent based on this equation is called Black Box Variational
Inference (BBVI) [7]. The problem of a high variance under the framework of BBVI
is common. Using reparameterization tricks in latent space given by Max Welling’s
variational auto-encoder (VAE) is proved to be efficient [5]. We assume that there exists
a function Z = fφ(ε) where ε ∼ N (0,1), then the equation 2.9 will become

∇φELBO(x;θ,φ) = Eε(∇φlog(p(X , fφ(ε)))− log(qφ( fφ(ε)))) (2.13)

Recent works [5, 8] have proven that VAE can reduce variance and make the Monte
Carlo estimation probable. But VAE also has apparent limitations: it can not deal with
discrete variables, and the number of distribution groups to do reparameterization is
limited. Two papers [22, 23] took the advantage of Gumbel-Softmax distribution to
relax discrete variables then it is able to do reparameterization to discrete variables.

Another problem with reparameterization is that the number of distributions that can
do reparameterization is very limited. Automatic Differentiation Variational Inference
(ADVI) [12] was proposed to map the variational distribution in the original individual
parameter space to an unconstrained common space. Blei et al. tried to use acceptance-
rejection sampling to enlarge distributions used for reparameterization [24]. ADVI is
the method that we will mainly discuss in this project.

Flexible Transformations Variable transformation can be done in a more flexible
manner. That is the point of normalizing flows (NFs) [8]. NFs are generalizations of
the reparameterization trick: In the past, we transformed with a function, but now we
can transform with a multi-layer function, as long as the Jacobian of the composite
function is easy to solve. A key challenge at this point is to find enough representation
power, and Jacobian is a family of functions that is more easily available. Research in
this area has been extensive. A simple linear-time transformation was demonstrated [8],
and it was also mentioned that infinite flows could be used, such as Langevin Flow and
Hamiltonian Flow. Max Welling et al. proposed inverse autoregressive flows (IAFs)
[25].

*Better Optimization Aims Given a main model, we need to design optimization
objectives (such as KL divergence/ELBO), variational models, and corresponding
optimization algorithms. Thus far, we have only discussed improvements in the latter
two parts. Another optimization goal can be chosen in addition to ELBO. Compared
to ELBO, importance-weighted auto-encoders (IWAE) [26] use a lower bound that is
better. Additionally, operator variational inference (OPVI) [27] re-examines the design
of this optimization objective and proposes a more general framework with KL loss. As
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a general matter, this type of problem is less work than the first two, since we can always
design better optimization algorithms to compensate for the defects in the optimization
goal.

2.4 Probabilistic Programming

2.4.1 Definition and Languages

Programming paradigm of probabilistic nature is probabilistic programming (PP).
Under this framework, the Bayesian probabilistic models are specified and inferred
automatically [28]. The field of probabilistic programming combines machine learning,
statistics, and programming languages, and develops evaluators for machine learning-
based inference models [28]. In general, a probabilistic programming system provides
researchers with direct answers when there is uncertainty about the parameters. Proba-
bilistic reasoning hand-written programs can be used to assist in decision making under
uncertainty. With probabilistic programming, such programs are more easily to imple-
ment, providing a convenient framework or an interface to define the probability model
as well as automatically learn probability models. By using probabilistic programming,
researchers can avoid having to calculate the posterior based on their own models, or
even write the parameter update process by hand. They can write their own programs
quickly if they are familiar with a probabilistic programming language.

Programming languages for probabilistic applications are commonly implemented using
C, C++, Java, and Python, which are often extended from mainstream basic program-
ming languages. For example, Alchemy [29] is extended by C++, Probabilistic-C [30]
is extended by C, BLOG [31] is extended by Java and PyMC3 [32] is extended by
Python. Different frameworks are used under different situations and domains, select-
ing the most appropriate language in accordance with the model descriptions and the
environment settings, depending on personal preferences and easier implementations.
Below we provide an overview of some mainstream probabilistic programming lan-
guages within the machine learning and statistics domain, [28], from which researchers
can choose:

• machine learning: Church [33], Anglican [34], BayesDB [35], CPProb [36]

• statistics: Birch [37], STAN [38], Infer.NET [39]

• deep generative models: Probtorch [40], Pyprob [41], Pyro [21]

2.4.2 Main PPL: Pyro

Pyro [21], as described in part 2.4.2, is an open-source probabilistic programming
framework available in Python and supported by PyTorch, an open-source machine
learning library for researchers. Compared to other programming languages, it has the
advantage of inferring for generative models and solving variational inference problems.
Its torch-based API appeals to many users, as well. Although a new framework called
NumPyro [42] has been released recently which is based on Jax for automatic differen-
tiation (automatically compute gradients) and is faster than pyro, we introduce pyro
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instead to better understand how it is used for inference problems and not the advanced
calculations for gradient optimization.

A first step in Python is to construct your own dataset, or use a built-in dataset in Pyro.
The next step is to construct your own model. It is possible to set some parameters of
the prior distribution that are confirmed because one needs to know the prior distribution
of the parameters first. Latent variables create new samples under the plate. In Pyro, the
plate ensures conditional independence between new data. Designing the guide is the
third step. The variational distribution in pyro is called guide, and it is only determined
by the latent variables, so we only need to create the joint probability distribution among
all latent variables. The fourth step is to identify our optimizer, usually Adam, but it
can also be SGD. The final step is to bring the model and guide into SVI (stochastic
variational inference). The ELBO parameters’ update is automatically calculated by
SVI in Pyro. It will calculate KL loss when using the step function. We can then train
the model to figure out the latent variables’ parameters. Consequently, by comparing
the prior to get a better posterior probability that matches the input data as a knowledge,
we can generate more data according to the model to see if the posterior is better than
the prior. This is the general framework for training in Pyro, which demonstrates that a
reasonable posterior, one dataset, and only one model are needed.

Some scholars might still feel that designing a suitable guide is difficult, and hope
that the program can guides the model automatically on its own. Fortunately, Pyro
has already provided these guides, where the base is called AutoGuide. The aim
of this project is to generate new autoguides or improve the original autoguide to
make the variational distribution closer to the ideal posterior distribution. In Pyro, we
mainly concern ourselves with the classes AutoGuide, AutoContinuous and some of
their inheritance, including Mean-field Gaussian posterior AutoDiagonalNormal and
Full-Rank Gaussian posterior AutoMultivariateNormal. With regard to an example,
here we are demonstrating:

1 from pyro.infer.autoguide import AutoDiagonalNormal
2 from pyro.infer.svi import SVI
3 guide1 = AutoDiagonalNormal(model) # Mean -field
4 svi = SVI(model , guide1 , ...) # Stochastic Variational Inference
5 for i in len(num_steps):
6 loss = svi.step(x, y) # record loss

Listing 2.1: Example of using Pyro AutoGuide

Pyro has provided the function get param store() to extract the learned parameters,
allowing us to plot the data given the posterior distribution and model parameters. The
performance of mean-field and full-rank Gaussian distributions can be improved by
providing new classes and using them as shown in the code block. The details of
building new models in Pyro will be explained in part 3.4.
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2.5 Bayesian Networks (BN)

2.5.1 Definition

A graphical model (PGM) represents the structure of conditional dependencies between
random variables with a graph. The model is commonly used in Bayesian inference and
probability theory. There are three types of probabilistic graphical models: Undirected
Graphical Model (DG) , Directed Acyclic Graphical Model (DAG) and Directed Cyclic
Graphical Model (DCG) [43].A Bayesian Network (BN) is equivalent to a DAG, where
edges are directed and its joint probability can be expressed as a multiplication of
conditional probabilities. We care about BN only, since we intend to explore inverse
dependencies of models, which is an indication that the model needs to be directed and
acyclic. Two commonly known examples about Bayesian Networks are: Deep Belief
Networks [44] and Gaussian Mixture Model [45].

2.5.2 Important Properties of BN

We have discussed in this section how the BN is related to a probability distribution,
what its essential properties are, and how it is used in our project.

x1

x2 x3

x4 x5 x6

Figure 2.1: An example of a
Bayesian Network: G(V ,E),

where V = {x1,x2, ...,x6} and
E = {x1 → x2,x1 → x3,x2 →
x4,x2 → x5,x3 → x5,x3 → x6}

Factorization The general expression of a joint
probability for a BN G(V ,E) is:

p(x) = ∏
v∈V

p(xv|xpa(v)) (2.14)

We give an example to illustrate the construc-
tion of a joint probability of Bayesian Network,
also called the factorization process. Given a
graph G(V ,E), where V = {x1,x2, ...,x6} and
E = {x1 → x2,x1 → x3,x2 → x4,x2 → x5,x3 →
x5,x3 → x6}, as shown in Figure 2.1. The ob-
servation of x2 depends on the observation of x1,
indicating that x1 is the parent of x2 so the joint
probability of p(x1,x2) = p(x1)p(x2|x1). The joint probability of the total graph is:

p(x1,x2, ...,x6) = p(x6|x3)p(x5|x2,x3)p(x4|x2)p(x3|x1)p(x2|x1)p(x1) (2.15)

The inverse conditional probability is a posterior distribution. Now x4, x5, and x6 are
latent nodes and x1 is the observed node. Therefore, it is an inference problem. Due to
the fact that inference cannot be induced directly, it is necessary to assume an inverse
dependency, reconstructing observed latent nodes from unobserved ones. Methods of
analyzing a model’s inversed dependency structure will be discussed in part 3.

Local Markov property Based on its parent variables, the local Markov property states
that each variable is independent of its non-descendent variables:

Xv ⊥⊥ XV∖de(v)|Xpa(v) for all v in V (2.16)
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We can use this condition to remove redundant variables in calculating joint probability.

d-separation and I-map Based on a third set Z, d-separation determines whether
a particular set of variables X is independent from a different set Y on a Bayesian
network. Local Markov property is a particular case of d-separation. If any node in
the trail between A and B is not observed and the trail is converging, then node A and
node B are d-separated. The easiest way is to perform the moralization of graphs and
remove observed variables to see if an edge is added between node A and node B. More
examples are presented in Koller’s PGM book [43].

Graphs that satisfy all the conditions of an independent distribution are called I-maps,
where the conditional independence contained in the graph is a subset of the conditional
independence satisfied by the distribution. A distribution can be derived from a list of
graphs that includes all dependencies, which allows us to assume less distribution at a
time.

2.5.3 BN with Variational Inference

A plate model describes the dependencies between variables in a Bayesian network. The
plate model eliminates the need to account for the interdependencies of each variable in
the group. In addition to presenting variational inference in a Bayesian network, the
plate model can differentiate between the conditional prior probability distribution and
the posterior distribution.

x

θ z

N

Figure 2.2: Plate model of pθ(z)pθ(x|z)

x

φz

N

Figure 2.3: Plate model of qφ(z|x)

θ is the shared parameter for computing prior and conditional probability based on
Z and X and is none of the observed and latent variables, so it’s out of the plate.
Computing posterior is the opposite process which is directed from X to Z. In the
approximation space, φ is the only parameter to Z. In general, we build a plate model
to see dependencies of variational inference clearly.
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ADVI and potential improvements

This chapter attempts to explain the methodology used in the experiments in terms
of theories that could improve basic variational methods and autoguides. Section
3.1 describes the inference problem to be solved. Section 3.2 presents ADVI, one
of the most effective solutions to the central problem based on variational inference.
Section 3.3 presents improved methods of estimating the posterior by accumulating the
inverse dependency of the latent variables. In Section 3.4, we present novel methods of
improving autoguides by using different types of covariance matrices, where Gaussian
distributions dominate the approximation space. The third improvement method called
inference compilation, is discussed in Section 3.5.

3.1 Problem Restatement

In the previous paragraph, the concept and nature of the inference problem were
discussed. Here is a recap of the problem and below we will provide a solution. In
essence, one central issue of this essay is to determine the posterior distribution of latent
variables given any custom probability model containing latent variables, the prior
distribution of these latent variables and the data points. By finding a more accurate
posterior distribution, some unknown data points can be predicted from the pattern of
the latent variables.

In section 2, the inference problem has been formulated. One example here is that the
problem can be pertained to solve Gaussian posterior distributions. As far as the one-
dimensional Gaussian distribution is concerned, mean and variance are latent variables
(scalars). For the multivariate Gaussian distribution, mean vectors and covariance
matrices are latent variables. In general, the posterior distribution of the Gaussian
distribution is in the same distribution group as the prior distribution, which is known
as a conjugate prior. A posterior with such priors has an analytical solution when they
are converted. In other words, under the denominator of Bayes theorem formula 2.1,
the integral of the observed variable is also generally integrable.

As with the posterior and prior, the gamma distribution and the beta distribution are
conjugate as well. For discrete variables, the classic conjugate priors are the multinomial

14
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prior, poisson prior, and bernoulli distribution. It is generally necessary to map a one-
dimensional integral to a high-dimensional integral for MCMC with Gibbs sampling
if the denominator integral cannot be calculated for any other discrete or continuous
variable distribution. This greatly increases the time and space complexity of the
calculation. Ideally, we would like to keep away from the time-consuming process of
integrating or sampling. In this way, we introduce a variational distribution, in which
variational clusters reduce the distance from the original posterior distribution. Data
points are not considered in the estimation as they do not influence the parameters of
the variational distribution.

The method does, however, have some obvious restrictions. In some cases, it is
impossible to determine what the true posterior distribution is, making it impossible
to decide on a variational factor that is reasonable. A second problem is that its
variables have constraints on their distributions and ranges. It follows that the variables
of the variational distribution will be strictly within the same distribution cluster as
the parameters of the posterior and prior distribution. During the maximization of
expectations process (EM), the variational distribution q is optimized, as outlined in
section 2. During this process, KL divergence will also be calculated so that the gradient
of ELBO will be calculated automatically. It will be necessary to make sure that the
parameter value is still within that limited range after the gradient update. Therefore,
it is crucial to always be aware of the parameter value’s size in order to avoid the
update parameter running over the set limit. This process requires experts and humans
to predetermine the parameters. Depending on the model and the data, there will be
different parameters and range settings, which can be very troublesome, since setting
parameters can’t be generalized.

In order to ensure that any model can use the same parameter space, a new method is
introduced in which all latent variables, regardless of distribution, are reparameterized
into a high-dimensional space. ADVI discusses this method extensively. Detailed
discussion of ADVI, including further approximations to latent distributions, is provided
in section 3.2.

3.2 ADVI

The ADVI process consists of four stages: 1) remap each input’s parameter distribution
into a new shared space, remove restrictions on its values 2) approximate the shared
space to a Gaussian distribution 3) transform into a standard normal for automatic
differentiation and Monte Carlo integration 4) specify parameters (latent variable)
update based on Monte Carlo sampling and gradient descent.

ADVI requires no conjugate prior, but only a differentiable variable distribution, since
the gradient must be continuous. In addition, the input model should also be differen-
tiable, and the joint probability distribution type should support the priority. The authors
have mentioned a number of models that were used for testing autoguides, including
linear regression, GMMs, and LDAs [12] , which can marginalize out variables to
ensure that they meet the continuous and differentiable conditions.

1) Given Latent variables θ, and its prior distribution: p(θ). The aim is to transform
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the support of θ in order to be live in RK space Q by function T. The transformed joint
distribution can be expressed as:

p(x,q) = p(x,T−1(q)) | detJT−1(q) | (3.1)

where p(x,T−1(q)) represents the original distribution factor and JT−1 is the Jacobian
matrix of the inverse of T [46]. An example is the Gaussian distribution where its
covariance matrix is diagonal. To ensure that the diagonal of its covariance matrix is
positive, the values on the diagonal must be greater than 0, which is identical to the
determinant of the covariance matrix | diag(σ2)|> 0. Afterward, you can alter θ into the
real number domain either by using the softplus function log(1+e(σ2)), or by directly
using the log function.

2) Any given transformed parameter can be approximated to this space by a common
distribution group, which is defined as a Gaussian distribution in ADVI. The following
two cases should be discussed in this context. The first case is to assume that the latent
variables in the Q space are independent of each other, which is the so-called mean-field
Gaussian distribution with factorization separated:

q(η,Θ) = Normal(η | µ,diag(σ2)) (3.2)

=
K

∏
i=1

Normal(ηk | µk,σ
2
k) (3.3)

where Θ = {µ1, ..., µk} ∪ {σ2
1, ..., σ2

k}. In the Pyro implementation, each of the variables
is concatenated with each other and will lead to a R2K vector. Obviously the variances
have been constrained to the positive real coordinates, therefore we should remove this
constraint by mapping these positive variance to the whole real number space, where
the function might be a softplus function or just a simple logarithm transformation.
One problem of this method is that we assume the variables are independent of each
other, but actually latent variables might include some dependencies between each other
where we need to accmulate these dependency distribution to reach a joint distribution.
So a multivariate normal distribution is needed. It is also called full-rank Gaussian,
since each row or column entry of a covariance matrix is not a combination or other
row or column vectors in the matrix. Likewise, the form of the full-rank approximation
is in this form:

q(η;Θ) = Normal(η | µ,∑) (3.4)

We must make sure that ∑ should be also positive semi-definite as definition of the
covariance matrix. Therefore, we could use a special LU factorization: Cholesky
factorization which assumes that ∑ = LLT and that covariance matrix is positive defintie.
Only one factorization for a positive definite and symmetric matrix exists. It can help
explain the fact that dependence between each pair of two variables might help improve
the posterior distribution, while it could include more parameters to train than a mean-
field assumed distribution and still requires a cholesky constraint for the covariance
matrix. The number of parameters to train in a mean-field Gaussian is equal to 2*K,
where K is the latent dimension (number of variables), but the number of parameters to
train in a full-rank Gaussian is equal to K+K*(K+1)/2.
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3) We need to revisit the loss function for estimating the best q function in the trans-
formed Q space, which is shown in background part that the metrics to measure two
distribution’s differences is the KL-divergence Loss and is equivalent to measuring the
ELBO. However, in the transformed space, we need to rewrite it to be related with q
function and the common parameters Θ in the Q space, which is:

L(Θ) = Eq(η;Θ)[log
p(x;θ)

q(η;Θ)
] (3.5)

= Eq(η;Θ)[logp
(
x,T−1(η)

)
+ log|detJT−1 (η) |]+H[q(η;Θ)] (3.6)

It is intractable to calculate the expected differential for the ELBO when updating it and
doing back propagation. Thus, we can calculate the differentiation of the term inside
the expectation first, and then find the expectation by applying the final transformation,
which is called the elliptical standardization [47]. Sθ can be regarded as a transformation
that encapsulates the variational parameters in the latent space. This will convert the non-
standard Gaussian distribution into a standard Gaussian distribution. The transformation
for the mean-field assumption is ζ = Sθ(η) = diag(exp(w))−1 (η−µ) , but for the full-
rank assumption, it is ζ = Sθ(η) = L−1 (η−µ). As a result, it will generally lead
to an approximation of the standard normal: q(ζ) = Normal (ζ|0, I). As entropy is
independent of both the model and the transformation, it does not require transformation.
It is also stated that a simple analytic form is given for the entropy of the Guassian and
its gradient, which can be implemented once and reused for all other models [12].

Algorithm 1 Parameter updating process for ADVI [12]

Require: Dataset x, model p(x;θ), iteration i = 1, threshold δ

µ1 = 0, w1 = 0 (mean-field) and L1 = 0 (full-rank)
while ∇ELBO less than δ do

Draw M samples ζm ∼ Normal(0, I)
Approximate the gradient to the mean ∇µL using MC integration
Approximate the gradient to the covariance ∇wL or ∇LL using MC integration
Calculate the current step size ρi

Update µi+1 ⇐ µi + diag( ρi) ∇µL
Update wi+1 ⇐ wi + diag( ρi) ∇wL
Update Li+1 ⇐ Li + diag( ρi) ∇LL
Increment iteration counter i = i + 1

end while
Return µ∗ ⇐ µi

Return w∗ ⇐ wi

Return L∗ ⇐ Li

4) As a final step in ADVI, the update of the variational distribution parameters plays a
significant role. Since we approximate the variational distribution as a Gaussian score,
there is a parameter of µ regardless of whether it is the mean-field assumption or the
full rank assumption. To conclude, the rest parameters associated with the mean-field
assumption are w, while the parameters associated with the full rank assumption are
L. If we separately differentiate these three variables, we will get ∇µL, ∇wL and ∇LL.
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As a result of approximate standard normalization of the terms within the expectation,
they are now differentiable, so the expectation is the only thing left to do. Monte Carlo
Integration can therefore be applied to draw samples based on the standard normal. In
some conditions, the algorithm converges to the ELBO local maximum. The algorithm
is implemented in one class called AutoGuide in Pyro. Two assumptions AutoNormal
and AutoMultivariateNormal are derived from AutoGuide. They are the most basic type
of autoguides and we compare them with our novel autoguides.

3.3 Learning Inverse Dependencies

Although ADVI successfully maps the parameters of any model into the same latent
space, the algorithm assumes independence between variables. We hope that by incorpo-
rating the conditional distribution between the latent variables into the calculation of the
posterior probability, we can fully take advantage of the dependencies between variables
to infer parameters. In part 2, we discussed how the original probability from a latent
variable node to an observed node can be represented as a probabilistic graphical model.
In contrast, for the calculation of the posterior probability, it must be done by creating a
reverse probabilistic graphical model from the observed node (or leaf node) to the latent
node. The reverse probability model must be constructed by first converting the directed
graph into an undirected graph [48], which we can then construct the posterior from
the moralized graph. It maximizes the expression of the original information about the
original paths in the graph. It minimizes the loss of the conditional independence that is
contained in the directed graph.

Moralization and Markov Blanket As moralization is not the main point of the project,
it serves as a prerequisite for inverting the models, so I will simply explain how it works
here. By using a moral graph in graph theory, a directed acyclic graph can be translated
into its equivalent undirected form. For the junction tree algorithm, it is one the most
important step, which is used to propagate beliefs on graphical models. An undirected
equivalent of a directed acyclic graph is formed by enforcing edges between all pairs
of nonadjacent nodes that have a common child, and then removing all direct edges
from the graph. In equivalent terms, an undirected graph is a moral graph of an acyclic
directed graph in which the nodes of the original G are now connected to their Markov
blankets. In a trusted Bayesian network, a Markov blanket of node A refers to a set of
nodes related to A ,which contains the nodes of A’s parents, its children, and its child
nodes’ parents (excluding A). In a Markov random field, a Markov blanket is simply
represented as a node adjacent to node A. A Markov blanket usually represents the
first case in machine learning. At this point, we can compute the moral graph for any
directed acyclic graphical model.

Example As a simple example, figure 3.1 on the left shows a DAC in which C is a latent
node. It has nodes A and B as parents. E is a child node. D is the parent node of child
node E apart from node C. Based on the definition of moralization, the parent node
of C shares a child node. However, the parent node does not have a link. Therefore,
we need to add an edge between A and B to indicate the relationship between A and
B. Similarly, another edge needs to be added between C and D, so two operations are
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Figure 3.1: A directed acyclic graph and its moral graph [4]

Figure 3.2: A moral graph and its reverse graph of 3.1 left [4]

performed in this graph. When it comes to C’s Markov blanket, it is the parent node of
C, which are A and B, the child node E of C, and the parent node D of the child node of
C. In other words, node C’s markov blanket is all nodes except C.

The inverse dependency of the model can be obtained in two ways. Starting from
the observed node and upstreaming to the latent node is the first method. In this
method, the node distance between an observed node and current node is measured and
topological sorting or shortest distance sorting is performed. Starting from the latent
node, the second method proceeds down in a downstreaming process. To calculate
joint probability distributions, the metrics are used to determine the minimum number
of variables needed to eliminate the variables. Alternatively, we are considering the
smallest number of additional edges required to form the smallest clique for a node
which will be the parent (or root) of the reverse model.

3.3.1 Observed to latent (Upstream)

Analyzing from observed data to latent variables is mentioned in two articles [49, 50].
In a directed graph G(V ,E), V and E represent the vertices and edges, respectively.
And given the observed node vobs, then any vk in V except vobs has a distance from
vobs, which is expressed as: dist(vobs, vk). We can sort all points in V using this
distance metric. In this list, the most frontal node is the one closest to the observed
nodes. In order to maintain the conditional probability, we connect all points except the
parent nodes in the original forward diagram to the current point. Based on the above
explanation of d-separation, the point and all the other unconnected points in the graph
are independent of one another. We will proceed to the next node in the list after that
until we have explored all latent variables.

With respect to Figure 3.1, we will begin with E, where E is the observed node. Ac-
cording to the moral graph, the original E’s parents C and D become its children in
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the reverse graph. Distance from E to C and D is the same, i.e. dist(C,E) = dist(D,E).
The distance between D and A is now equal to infinity since A is a leaf node and there
is no path from D to A. D is ranked before C because D is more distant from the leaf
node whereas the distance between A and C is 1. We add a directed edge V ′

C→D ,
and similarly add V ′

A→B . The implemented algorithm arranges the nodes either in
topological order or according to their distance from the observed node. First, the
inverse dependency of the original priority is added, followed by a directed edge from
the markov blanket (excluding its parents in original fowarding graph) to the node
according to the order of the order, with the directed edge pointing to the node.

In the papers relating to the two methods, two distinct sampling methods were dis-
cussed. In order to perform online forward and reverse sampling in stochastic inverse,
the MCMC and MH sampling algorithms are used [50]. The second method involves
simplifying the inverse graph to produce distinct latent variable(s) by using its connec-
tion relationship as a basis [49]. The model is regarded as a forward neural network. To
learn the revised conditional density, sequential Monte Carlo is employed [49]. New
sampling methods were not considered in this study. In contrast, we examined whether
adding such inverse dependency would improve inference effects.

3.3.2 Latent to observed (Downstream)

Figure 3.3: A DAG with 7 nodes. First moralize the graph, which means additional
edges should be added between A and B, D and E, and C and G [13].

Figure 3.4: Start with latent node, A and B. For B, we need to add another edge CD and
AD to calculate the joint probability p(A, B, C, D), so A is prior than B since calculating

p(A, B, C) does not require adding any edge in the graph [13].

Another method explores the inverse dependency structure from latent nodes to observed
nodes [13]. In essence, a directed graph is constructed from the latent nodes to the
observed nodes. Examples are given in figures 3.3 through 3.8. We begin by constructing
the list of nodes that have been visited already (null), followed by the list of frontier
variables that are ready for elimination. In 3.3, we reach a moral graph of the left DAG.
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Figure 3.5: After A is eliminated and marked as visited, since B is not visited so we need
to visit B. We need to calculate the joint probability p(B, C, D). Therefore, an edge CD is

added. C and D are added to the latent node list and B is removed from the list [13].

Figure 3.6: Similarly, eliminating D does not require adding any edges (edge CD has
already been added in the last round), so D is prior than C [13].

Figure 3.7: Eliminating C requires adding an additional edge EF. After that, add E to the
latent node list. E is the last node to eliminate since F and G are observed nodes (roots)

[13].

Figure 3.8: Finish traversing and the directed graph on the right is the inverse
dependency graph of the original model (posterior) [13].
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Latent nodes A and B are referred to as frontier variables. If we wish to eliminate
joint probability p(A, B, C), we must form a minimal clique with A’s neighbors B and
C. Checking B reveals that eliminating p(A, B, C, D) does require an additional edge
between C and D. This means there are no ACD or BAD cliques, so A is more prior
than B. Afterward, A is selected with its neighbors pointed to it, and A is then marked
as visited. Since B is still in the frontier variable list, visit B. To eliminate p(A, B, C, D),
two variables C and D are needed, so C and D are added to the frontier variables list. We
repeat the above process until we reach the last observed node. Finally, directed edges
are added from observed nodes to the last observed node. We can also express this
algorithm this way: we sort nodes according to the number of variables to be eliminated,
then add edges between Markov blankets (between nodes). This algorithm has been
implemented in Pyro which is called AutoStructured.

3.4 Covariance Matrices’ Variants

We discovered improvements to autoguide by passing covariance matrices, in addition
to inverting model dependencies. We wonder, for example, if we can use methods other
than softplus constraints to make the variance and mean always greater than 0, for the
class of AutoDiagonalNormal (corresponding to the mean-field assumption in ADVI).
AutoMultivariateNormal is another example. To ensure positive definiteness of the
covariance matrix, we only use the lower triangular matrix for this class (corresponding
to the full-rank assumption in ADVI) and pass it as the scale tril to the Gaussian
distribution. To reduce the number of parameters or improve inference, we considered
designing different covariance matrices. Six new autoguides were designed using
different covariance matrices, with the only condition being that the covariance matrix
must always be positive definite.

3.4.1 PolyDiagNorm

We observe from the class AutoNormal or AutoDiagonalNormal that the posterior
distribution obeys the rule that the scale term should be transformed by a softplus
function to ensure that each variance term in the scale vector is positive. The main idea
for the new autoguide PolyDiagNorm is to perform linear transformation to each term
in the scale. Given a scale x = [x1, x2, ..., xn], looking from the intermediate results of
any sampled training in our tested datasets, any trained xi would not be larger than 10
for example. More strictly, since the original scale was assigned to a small value so it’s
not likely to show big gradient jump in the training. Therefore, 0.1 * xi will be smaller
than 1. Recall the theorem that:

1
1− x

= 1+ x+ x2 + ...+ xn (3.7)

for any x within -1 to 1 where n is close to infinity. Given any n, the value on the right
side of the equation will be larger than zero. Therefore we can define a function F(x)
= 1 + x + x2 for example, the new scale that is passed to the distribution function will
become: x’ = [F(x1), F(x2), ..., F(xn)], where each term in x’ is larger than zero and
thus removing the softplus constraints. With a high-dimensional dataset, we can set the
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coefficient of xi to a smaller value, which may be task-specific. It is conceivable that
there is a better way to remove constraints, such as assigning a sine or cosine function
to the original value, which is considered to be included in our future work.

3.4.2 SymmetricNorm

In the AutoMultivariateNormal class, cholesky factorization has been performed, and
the results have been passed to scale tril so that they satisfy the full-rank assumption in
ADVI. We find that the matrix scale tril is a lower triangular matrix. The disadvantage
is that it still requires a lot of parameters during the training process. In addition, we
want to investigate how to generate new types of positive definite covariance matrices
without cholesky factorization. In order to generate the symmetric matrix, we perform
a matrix-level multiplication with the scale vector and its transpose. Suppose that the
latent dimension is N. Then the total parameters for training in AutoMultivariateNormal
is equal to N*(N-1)/2. In our method SymmetricNorm, the number of parameters is still
2*N.

According to the symmetric matrix theorem, given any matrix or vector x, xxT is
symmetric. It is easy to prove that (xxT )T = (xT )T xT = xxT so that the matrix is
symmetric. Then we scale the matrix by a small number c, such as 0.01. From linear
algebra, we know that adding a few small elements to the diagonal of a symmetric
matrix can make it positive definite. Therefore our covariance matrix Cov will become:

Cov = c∗xxT +K ∗ In (3.8)

where n is the latent dimension (dim) and x ∈ R1∗dim. Typically c is equal to 0.01 and
K is equal to 1.

We could also perform matrix decomposition to this positive definite matrix to extract
its eigenvalues which can be further transformed into a diagonal matrix, where Cov
= U∑UT , where UT = U−1 and ∑ is a diagonal matrix containing Cov’s eigenvalues.
We can pass ∑ to covariance matrix since eigenvalues for a positive definite matrix are
larger than zero, but it is our choice whether or not to do so.

3.4.3 LowRankNorm

Our new autoguide LowRankNorm is a special case of SymmetricNorm. Suppose that
we would like to create a covariance matrix by a low-rank matrix Cov, where Cov ∈
Rm∗n and m ̸= n. The implementation of the class AutoLowRankMultivariateNormal
entails self-multiplicating Cov with the transpose of Cov’s diagonal and adding small
numbers to it along with Cholesky factorization. It may have disadvantages, such as
adding squared scales to the diagonals instead of a unified scaled identity matrix, and
it does not account for the scaling fact of Cov.CovT . The idea is to multiply Cov by
another trained matrix and add a scaled number c:

Cov′ = c∗ (U ·Cov)(U ·Cov)T +K ∗ In (3.9)

where U ∈ Rn∗m. c is typically equal to 0.01 and K is equal to 1. Moreover, Cov’ may
be substituted into equation 3.8 to make it the case of SymmetricNorm.
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3.4.4 BlockDiagNorm

The block diagonal matrix, for instance, is one of the useful but special types of matrix
in linear algebra. We create the autoguide BlockDiagNorm based on the block diagonal
matrix. This type of matrix is square diagonal matrices that have square elements on
the diagonal while containing zeroes on the off diagonal. The block diagonal matrix C
is typically in this form:

C =


A 0 · · · 0
0 B · · · 0
...

... . . . 0
0 · · · · · · K


where A, B..., K could be any kind of matrix. There is only one requirement: C must
have the same number of rows and columns. We only used two matrices A and B to
construct such C in the real implementation. Therefore, both A and B must be positive
definite in order for this block diagonal matrix to be positive definite. We use the same
operations as described in 3.4.2 and 3.4.3. It also cuts down the number of parameters
for training, since A ∈ R⌈N/2⌉∗⌈N/2⌉ and B ∈ R⌊N/2⌋∗⌊N/2⌋ for example, then the total
parameters is less than equal to N/2 * N/2 * 2 = N2/2, which is then less than N2. Since
more non-zero terms are included in the covariance matrix, that means the mutual
information between two latent variables has been included, so it might perform better
than a pure diagonal matrix.

3.4.5 ToeplitzNorm

Toeplitz matrices are another type of covariance matrix that can be utilized. We create
the autoguide ToeplitzNorm. The toeplitz matrix is a matrix in which the diagonals
from left to right are constant. Toeplitz matrix C with n+1 rows and n+1 columns can
be written as:

C =


a0 a1 · · · an−1 an

a−1 a0 a1
. . . an−1

... . . . . . . . . . ...

a−n+1
. . . . . . a0 a1

a−n a−n+1 · · · a−1 a0


We have

Ci+1, j+1 =Ci, j = a j−i (3.10)

where 0≤i≤n-1 and 0≤j≤n-1.

We use the above equation when implementing the covariance matrix. There are
two choices. If we only use the scale vector, then we enforce a−n to be equal to an.
Alternatively, if we consider that the row vector differs from the column vector, then
we can build a new vector that assumes another N parameter space to construct this
matrix and force it to be positive definite. It takes up a maximum of 3*N parameters,
where N refers to the number of latent variables, but is computationally expensive for
high-dimensional latent variables.
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3.4.6 CirculantNorm

A circulant matrix C is the special case of Toeplitz matrix, where C can be written as:

C =


a0 a1 · · · an−1 an

an a0 a1
. . . an−1

... . . . . . . . . . ...

a2
. . . . . . a0 a1

a1 a2 · · · an a0


We create a new autoguide CirculantNorm based on the circulant matrix. By using the
scale vector, we can generate the matrix easily. Unfortunately, making sure that the
matrix is positive definite is difficult, so we use an extreme example. Specifically, we
only take into account the value of a0 and a1 and disregard other terms. The matrix now
looks like this:

C =


a0 a1 · · · 0 0

0 a0 a1
. . . 0

... . . . . . . . . . ...

0 . . . . . . a0 a1
a1 0 · · · 0 a0

or,C =


a0 0 · · · 0 a1

a1 a0 0 . . . 0
... . . . . . . . . . ...

0 . . . . . . a0 0
0 0 · · · a1 a0


In order to make the matrix positive definite, we need to make sure that a0 is larger than
zero and a1’s absolute value since the determinant value of the matrix is equal to an

0 +
an

1 in the left case while the answer is an
0 - an

1 in the right case if C ∈ Rn∗n. Regardless
of n, this value should always be greater than zero.

In the next round of training, if the scale vector does not satisfy the requirement, an
increase in a0 or decrease in a1 will be necessary to meet the requirement (suppose a0
and a1 are all positive).

3.5 Inference Compilation

Making the repeated inferences fast is critical . It is referred to as adaptive Monte Carlo
method, or amortized inference [51]. Inferences about past related models are reused
by humans to speed up current inferences [52]. Besides, according to the Brooks Paige
et al. [49], the inverse dependency network can be equivalent to a neural network. A
neural network can be constructed for each inverse graph. As the directed graphical
model is extended to universal probabilistic programs, inversing dependencies becomes
increasingly difficult and impossible. Thus, the author proposes a program-specific
method that ignores variable dependencies and uses a non-domain RNN model and
domain-specific observation embedding to guide latent variables. LSTMs and RNNs
can represent relationships between latent variables through their transfer relationship,
which makes deep learning superior. Similarly, some other works focused amortized
inference on one model, such as learning inference before seeing data [53, 54], which
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sample training data in an neural network and learning sequential Monte Carlo (SMC)
proposals for fixed graphical models [49].

Inference compilation A compilation of inference is a technique that transforms an
inference problem written in a universal programming language (STAN or Pyro) into
a trained deep learning model written in a neural network specification language [41],
such as Pytorch or Tensorflow. By feeding observational data into this neural network
at test time, a probabilistic model is approximated inferenced using the original model.

3.5.1 Difference from Variational Inference

Think about how we define variational inference: the goal is to find a posterior in the
approximation family Q that could minimize the divergence from our true posterior. As
part of amortized inference, the given family is a set of conditional distributions of z
given x instead of marginal distributions. It is thus a matter of identifying a member of
the family whose divergence from the true posterior minimizes the expected divergence.
KL divergence for amortized inference is DKL(p(x|y)||q(x|y;φ)) [41], which is different
from the KL-divergence for variational inference in equation 2.6.

Methods of learning inference differ according to the difference. Variational autoen-
coders targets KL(q||p) while some methods such as reweighted wake-sleep [55, 56]
and their SMC counterparts [57, 58] target KL(p||q).

3.5.2 Architecture

Recurrent Neural Networks To achieve amortized inference in inference compilation,
a recurrent neural network model is used to process the input without regard to the
domain [41]. Figure 3.9 illustrates the structure of a basic RNN.

. . . RNN RNN RNN RNN . . .

x⃗1 x⃗2 x⃗3 x⃗4

h⃗4h⃗3h⃗2h⃗1

Figure 3.9: Recurrent Neural Network

Particularly, the long short-term memory (LSTM) [59] architecture is utilized which
helps mitigate the problem that the gradients of RNN(s) tends to vanish and explode
when time increases. [59] Inputs of the LSTM are the concatenation of the observed
embedding, sampled embedding and one-hot encodings of current program address,
instance number and proposal type of the proposal distribution [41]. Figure 2.5 shows
the LSTM block where we need to pass the hidden states ht to proposal layers.
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Neural network architecture In particular, the long short term memory (LSTM) [59]
architecture is utilized for mitigating the gradient vanishing and explosion problems of a
RNN [59]. We start the evaluation by computing the observe embedding fobs(x), which
is domain specified. By executing a probabilistic program successively deterministically,
an execution trace can be generated that looks like this: (zt ,at , it)T

t=1. zt is the sampled
value, at is the address of the sample and it is the instance number of the sample, and
T is a trace-dependent length [41]. An LSTM network architecture is automatically
generated by combining an LSTM core with embedded layers, proposal layers, and a
probabilistic program for training the network with an infinite stream of training data
generated from the model.

Figure 3.10: LSTM structure in inference compilation

The details are shown in figure 3.10. The sampling embedding layer is applied to the
sampled value zt−1 at the last time step. The one-hot encoding layer is also applied to
address, instance, and type of address (proposal type). All of the elements constitute the
LSTM input. ht is the output of LSTM. We apply proposal layers to the output ht which
will lead to proposal parameters ηt . Note that the LSTM core can possibly be a stack
of multiple LSTMs. After the compilation stage is finished, weights φ are trained and
neural networks are specialized for the given model. Then, we use importance sampling
in conjunction with the model and network parameters to obtain the posterior, which is
fast and cheap when compared to compilation stage.
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Evaluation

4.1 Environment settings

The entire project requires Python 3.8.12, as well as Pyro-ppl version 1.8.1. As Pyro
is a dependency of Pytorch, we must install Pytorch, where version 1.11.0 is used.
VSCode, command line, and bash are used for development. In order to create training
loss graphs, view latent embeddings, and generate data, we will also need to download
matplotlib and seaborn, whose versions are 3.5.1 and 0.11.2 respectively.

4.2 Datasets and tasks

As part of our study, we tested the benchmarking autoguides and our generated au-
toguides on six datasets, including national income dataset, MNIST dataset, OSIC
pulmonary fibrosis dataset, SARS-COV-2 dataset and Daily S&P 500 dataset. As for the
remaining one, it is created using synthetic data in order to examine the latent variables
of the Gaussian Mixture Models (GMM). For each dataset, tasks are mentioned.

4.2.1 GMM data

A number of Gaussian distribution patterns can be found in given data using Gaussian
Mixture Models (GMM). The model parameters that we want to explore are mixture
weights Φ, means µ and a covariance matrix Σ. The following example illustrates the
problem and the expected result. Suppose we have a list of data. The data consists of
five elements, each of which is equal to 0, 1, 10, 11, 12. We give a Dirichlet distribution
to the weights with normal distribution to the means and covariance matrix, as well as
make sure that the parameter φi=1,...,K are reasonable since mixture models are sensitive
and succeptible to local modes. Under the Gaussian distribution, a trained mean will
be 0.5 and 11, and a trained variance might be 0.05 and 0.2. We have designed three
tests based on the different lengths of data with different numbers of potential Gaussian
distribution patterns. K = 2, 3 and 5 with dataset lengths of 20, 60, and 100 respectively.

28
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4.2.2 National Income Dataset

As part of supervised learning, linear regression is one of the most basic tasks. The
Bayesian linear regression will be applied to the national income dataset adapted from
this paper [60]. The purpose of exploring this dataset is to determine if the level of
ruggedness of a country is related to its GDP level. Specifically, we look at non-
African countries and African countries. Previously, a study stated that poor roads and
terrains generally result in low income levels, but this is not always true because poor
geographical conditions can elevate African countries’ GDP levels [61]. As a result, the
results are positive for African countries. By looking at the original data, but also by
inferring latent patterns and predicting the data, we can find out if this rule holds true
for African countries. Three features have been extracted from the dataset.

4.2.3 MNIST

MNIST is a large-scale dataset comprised of 60,000 training and 10,000 test examples
of handwritten digits [62]. MNIST is a well-known benchmark dataset that is used
mostly for computer vision oriented tasks such as image classification [63] and image
reconstruction [64, 65]. To determine whether autoguides can infer latent variables in
some classical deep generative models, we are interested in the reconstruction tasks in
this project. Specifically, a variational autoencoder with the structure of an encoder-
decoder network is being developed. Autoguides are used for guiding the model (the
decoder part) where the corresponding plate model is shown in figure 2.3.

4.2.4 OSIC Pulmonary Fibrosis

From Kaggle competition, we selected OSIC Pulmonary Fibrosis Dataset [66]. Pul-
monary fibrosis has no known cause or cure. We are trying to predict the severity of lung
function decline in this dataset. Spirometers measure forced vital capacity (FVC). When
it comes to medical applications, a model’s level of confidence can be useful. The 176
patients who were measured for FVC made an average of nine visits. Visits occurred
in the interval [-12, 133] during specific weeks. The decline in lung capacity is very
evident and varies widely from patient to patient. FVC measurement for each patient
for each week in the interval of [-12, 133] was predicted, along with their confidence
to match. In this application, we will use Bayesian hierarchical linear regression with
partial pooling using parameters α and β. Even though α and β differ for each patient,
the coefficients all share a similarity. The individual coefficients can be modelled by
assuming they all come from the same group distribution.

4.2.5 Daily S&P 500 dataset

Daily S&P 500 is the dataset that tracks the performance of 500 large companies in the
United States that deal with stock exchanges. As input data, we chose the close price
of the market. The model that we used is a stochastic volatility model [67], which is
utilized as a mainstream market prediction model [68]. Predicting the data that matches
the market’s direction is our goal. Under normal conditions, autoguide will encounter
a memory overflow on training latent variables due to the large size of the dataset,
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which is why we have selected data within the last 100 days. The number of days is the
parameter that we can adjust in the experiments.

4.2.6 SARS-COV-2

Many studies have focused on the epidemic situation of SARS-COV-2 (Covid-19) in
the past two years, which is why we included it to complement the timeliness of the
dataset. Based on public data collected from different PANGO lineage viral genome
samples around the world over time [69], this dataset includes the relative growth rates
of different SARS-CoV-2 strains . There are about 2 million sequences in total. The
plate structure of the model would return a block-diagonal like posterior covariance
matrix with an estimated 500,000 latent variables. Due to the high dimensions, the
program would also suffer from gradient explosion. We therefore set an autoguide list,
add the autoguide first, and then add a local guide to the list that blocks some latent
variables. This will aid in solving gradient explosion in a high dimensional latent space.
Our goal is to see if structured autoguides will improve in the large dimensional space.

4.3 Tested autoguides

We have selected AutoDiagonalNormal, AutoMultivariateNormal, AutoLowRankMulti-
variateNormal and AutoStructured-faithful as our baseline autoguides. PolyDiagNorm,
SymmetricNorm, LowRankNorm, BlockDiagNorm, ToeplitzNorm, and CirculantNorm
mentioned in 3.4 will be tested as new autoguides, as well as two inversed dependencies
based methods mentioned in 3.3 including Structured-topo and Structured-min-dis.

4.4 Aims of experiments (tasks)

1. To find out whether the new autoguides can further reduce the loss, we test all
those autoguides on different datasets. This is the main purpose of all experiments.
In light of the fact that the results of any random seed will be similar,we are not
testing random seeds. Fixed seed number is 2022.

2. Different datasets and models serve different purposes. The purpose of testing
GMM data was to see approximate Gaussian patterns in the data. The income
dataset was tested to determine if the bootstrap parameters confirm whether the
ruggness has a reverse effect on African countries’ incomes. The MNIST dataset
was used to test if autoguide could guide deep generative models. The SARS-
CoV-2 dataset was used to test the inverse dependency model’s strength in the
case of high dimensionality. In testing the OSIC dataset and S&P 500 dataset, one
goal was to expand application scenarios for autoguides, and another goal was to
validate their capabilities by guiding models in latent space with relatively high
dimensions. Based on standard benchmark tests, we used Pyro’s existing code
to generate images of parameters, losses, and different inference patterns.

3. We will outline the possible scenarios of the new autoguides based on the data we
have selected, including some advantages and disadvantages in the case of both
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high-dimensional and low-dimensional latent variables, as well as the impact of
structured autoguides when dependencies are included.

4.5 Results

GMM dataset SymmetricNorm and LowRankNorm performed the best when K equals
2, which indicates that they reached the lowest loss during the training. Nevertheless,
they might suffer from a high variance problem, as shown in the table 4.1. When K
is equal to 3, PolyDiagNorm and ToeplitzNorm were the best according to the loss.
Structured autoguide performed the best among all autoguides when K is equal to 5.
The reason why Structured-topo and Structured-min-ds have shown the same results
with Structured-faithful is that in the corresponding graphical model, the parents of
”obs” are ”weight”, ”loc” and ”scale” with no potential path between each two parents.
Regardless of the type of inversed model we use, the last parameter in the plate (in
order) will always be the first node to be considered for adding markov blankets.

Table 4.1: Testsing autoguides on GMM dataset

Model K = 2 WEIGHT (K = 2) LOC (K = 2) SCALE (K = 2) K = 3 K =5
DiagonalNorm 72.65 0.67, 0.33 17.42, 10.27 1.57 194.77 334.02

MultivariateNorm 72.44 0.67, 0.33 17.30, 9.99 1.76 195.49 334.90
LowRankMultivariateNorm 72.09 0.53, 0.47 17.83, 9.38 1.22 195.65 331.27

PolyDiagNorm 70.68 0.67, 0.33 19.22, 7.54 1.44 192.48 340.17
SymmetricNorm 69.20 0.71, 0.29 17.82, 10.04 8.46 195.37 334.43
LowRankNorm 69.21 0.71, 0.29 17.90, 10.07 8.39 194.25 336.00
BlockDiagNorm 72.47 0.60, 0.40 17.32, 7.25 3.13 194.82 332.77

ToeplitzNorm 71.02 0.63, 0.37 17.35, 9.60 1.63 193.24 333.78
CirculantNorm 70.69 0.54, 0.46 18.99, 10.52 8.30 194.10 339.18

Structured-faithful 72.09 0.68, 0.32 18.62, 9.00 1.62 194.06 330.62
Structured-topo 72.09 0.68, 0.32 18.62, 9.00 1.62 194.06 330.62

Structured-min-dis 72.09 0.68, 0.32 18.62, 9.00 1.62 194.06 330.62

Furthermore, we were interested in inferences that could be drawn from the generative
model. We focused on a situation where K was equal to 3. Accordingly, different
autoguides will produce different gaussian patterns. We find that CirculantNorm leads
to a larger variance for each distribution, but the three other autoguides seem much
more concentrated and reasonable. The reason might be that the covariance matrix for
CirculantNorm is sparse as mentioned before while the covariance matrix for other
three autoguides is not sparse.

Also, we could take a look at the entire training records of the four autoguides listed
above. This time we choose K = 5. From figure 4.6 to figure 4.9, we can find that the
Strucutred and AutoNormal have shown a better level of stability during the training.
ToeplitzNorm is somewhat unstable after 100 epochs, but for CirculantNorm, it is
obviously unstable. To infer parameters in Gaussian mixture models, we could prefer to
use ToeplitzNorm instead of CirculantNorm. In order to resolve the stability problem
for CirculantNorm, we could increase the learning rate, for example 0.2 instead of 0.1,
or train with more epochs, for example 1000 epochs or more.

Income dataset We cared about the coefficients of this Bayesian linear regression
problem, which are bias a1, the coefficient of the variable ”is cont africa” a2, the
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Figure 4.1: pattern(AutoNormal) Figure 4.2: pattern(CirculantNorm)

Figure 4.3: pattern(ToeplitzNorm) Figure 4.4: pattern(Structured)

Figure 4.5: loss(AutoNormal) Figure 4.6: loss(CirculantNorm)

Figure 4.7: loss(ToeplitzNorm) Figure 4.8: loss(Structured)

Figure 4.9: Patterns and losses of four selected autoguides in the case of GMM with K =
3 and length of 60.

coefficient of the variable ”ruggedness” a3, and the coefficient of their product a4. We
infer the scale parameter as well. Since it’s low dimensional, it’s easy to estimate latent
variables. Default learning rate is 0.15. The purpose is to determine whether terrain
ruggedness correlates positively with income in African countries while the opposite is
true for non-African countries.

The training performance is displayed for each autoguide. In comparison with all other
new autoguides, ToeplitzNorm performed the best with a loss of 240.38 . It is the same
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Table 4.2: Testing autoguides on income dataset

Model LOSS LOC(a1) LOC(a2) LOC(a3) LOC(a4) LOC(SC)
DiagonalNorm 243.19 9.24 -1.87 -0.06 0.41 -2.21

MultivariateNorm 243.01 9.17 -1.85 -0.18 0.34 -2.20
LowRankMultivariateNorm 239.93 9.08 -1.98 -0.24 0.27 -2.30

PolyDiagNorm 256.25 9.47 -1.67 0.37 -0.05 -0.32
SymmetricNorm 251.32 8.57 -1.56 0.03 -0.53 -0.76
LowRankNorm 299.80 9.15 -1.02 -0.08 0.04 -0.32
BlockDiagNorm 243.30 9.15 -1.81 -0.17 0.34 -2.30

ToeplitzNorm 240.38 9.20 -1.78 -0.14 0.46 -2.15
CirculantNorm 395.07 2.52 -0.68 -0.10 -1.03 5.26

Structured-faithful 243.31 9.23 -1.96 -0.16 0.45 -2.23
Structured-topo 243.31 9.23 -1.96 -0.16 0.45 -2.23

Structured-min-dis 243.31 9.23 -1.96 -0.16 0.45 -2.23

inference level as LowRankMultivariateNorm, which is the baseline autoguide. Next,
we can measure the density of slope in their regression lines, and also the record of
training losses. The density shows no difference for LowRankNorm, so there is half
the uncertainty for this distribution. It is not surprising because in the original dataset,
the data seems to be similarly spread among two distributions . But for ToeplitzNorm,
the data distribution of non-African countries is more concentrated. So we dig into its
posterior predictive uncertainty.

Figure 4.10: Slope Density(LowRank)
from Income Data

Figure 4.11: Slope Density(Toeplitz) from
Income Data

Additionally, their posterior predict ability is different. ToeplitzNorm has shown a more
apparent positive slope when fitting non-African data than LowRankNorm. Therefore,
although LowRankNorm has given the best training loss, its posterior predictability it
not as good as ToeplitzNorm, which can infer that our new autoguides are better. In

Figure 4.12: Posterior(LowRank) from
Income Data

Figure 4.13: Posterior(Toeplitz) from
income Data

terms of the stability of autoguides’ training loss, we find that overall the loss is stable
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except for PolyDiagNorm and SymmetricNorm. During training, the learning rate is
relatively high, which makes convergence less likely. It may be necessary to adjust the
learning rate to a smaller value such as 0.05 or 0.02 instead of 0.15 to better achieve a
more stable training loss. The loss may also take a longer time to converge.

Figure 4.14: Loss(BlockDiagNorm) from
Income Data

Figure 4.15: Loss(ToeplitzNorm) from
Income Data

MNIST On the MNIST dataset, we test the autoguides to guide the model. Specifically,
the model is our decoder module in the variational autoencoder structure. First, we
disregard the inference network (encoder module) and use autoguide to guide the model
parameters. Then we compare the results with those that use a traditional neural network
as the guide, which is a traditional non-autoguide type inference network.

SymmetricNorm, LowRankNorm and CirculantNorm performed better on training loss
than the baseline autoguides. In our comparison of their embeddings, we find that,
despite the autoguides having a lower training loss, no significant difference can be
observed between the two classes in the t-SNE visualization. Despite better performance,
given the latent variables, the new autoguides cannot recover to the original data. We
illustrate this by looking at the reconstructed data generated by the program. When
we guide the model using the same parameter settings without autoguide, the data
is not well reconstructed, but we can deduce the number from each image. When it
comes to the autoguide, we can see that none of the images are clear because it is badly
reconstructed. Therefore, even with the plate model shown in figure 2.3, we conclude
that it is better to use a simple guide (neural network encoder) instead of an autoguide.

Table 4.3: Testing autoguides on MNIST dataset

Model TEST ELBO LATENT DIM HIDDEN DIM

DiagonalNorm 206.35 50 100
MultivariateNorm 208.38 10 10

LowRankMultivariateNorm 206.52 20 10
PolyDiagNorm 206.37 50 100

SymmetricNorm 205.89 20 10
LowRankNorm 205.90 20 10
BlockDiagNorm 212.85 20 10

ToeplitzNorm / 20 10
CirculantNorm 205.87 10 10
Structured-topo 206.30 10 10

OSIC dataset Our new autoguides are not as well as the baseline autoguides when
considering the lost on OSIC datasets. In addition, the autoguide BlockDiagNorm
suffers from gradient exploding, which is a common problem in high-dimensional
dataset training, even if we use the clipping Adam optimizer for training. ToeplitzNorm
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Figure 4.16: embedding(PolyDiag) Figure 4.17: embedding(Circulant)

Figure 4.18: embedding(Symmetric) Figure 4.19: embedding(BlockDiag)

Figure 4.20: Embeddings from four autoguides on MNIST

Figure 4.21: No autoguide Figure 4.22: With autoguide

is slow in training, and CirculantNorm is unstable in its loss. BlockDiagNorm requires a
small scaled coefficient of 0.0001 multiplied by the identity matrix in order to work. To
reduce a high computation time cost, ToeplitzNorm should not include matrix generation
by for operation in python but instead by performing the Toeplitz function within the
Scipy package. On the other hand, although training CirculantNorm was not stable, it
returned the lowest initial loss, which might be regarded as a good initialization method.

Observing the learned FVC for AutoNormal and SymmetricNorm, we can see that the
AutoNormal learned Bayesian linear regressions well. Orange and red lines are almost
in line with each other. It predicts a higher uncertainty where the data points are not
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Table 4.4: Testing autoguides on OSIC dataset

Model TEST LOSS LR

DiagonalNorm 12340.73 0.11
MultivariateNorm 13093.07 0.01

LowRankMultivariateNorm 13293.03 0.01
PolyDiagNorm 14158.62 0.05

SymmetricNorm 13913.47 0.05
LowRankNorm 14720.32 0.06
BlockDiagNorm / 0.001

ToeplitzNorm slow 0.02
CirculantNorm 14756.31 0.001
Structured-topo 15404.57 0.004

Structured-min-dis 15433.26 0.004

showing a predicted slope as shown in the first patient. However, it predicts a higher
confidence for patient 2 and patient 3. When it comes to SymmetricNorm, it adequately
learned Bayesian Linear Regressions, but it does not ensure a good confidence interval.
As a result, there is a tradeoff between a high fitness and a small variance (confidence
interval). Several autoguides follow the same pattern, so if we want to explore more
concentrated patterns for new autoguides, new parameters’ initialization should be fully
explored. From this, it can be concluded that it is difficult to determine whether our
new method performs better than any other autoguide in all aspects. Although it might
improve the loss, level up the ELBO, it might damage concentration on data patterns.

Figure 4.23: FVC AutoNormal from OSIC data

Figure 4.24: FVC SymmetricNorm from OSIC data

SARS-COV-2 We found that in such a high dimensional dataset with structured latent
variables, two methods based on inverse dependency models performed better than
covariance based autoguides with a loss of 12.04. They showed a good mean average
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error (MAE) in the inference step. Again, BlockDiagNorm suffers from gradient
explosion. Performing ToeplitzNorm is too slow because there are 538452 latent
variables and 4806046 learnable parameters, which is computationally difficult as
mentioned before.

Table 4.5: Testing autoguides on SARS-COV-2

Model LOSS MAE(OVERALL) MAE( MASSACHUSETTS) LR

DiagonalNorm 10.34 0.19 0.10 0.01
MultivariateNorm 691.6 1.33 0.58 0.005

LowRankMultivariateNorm 20.71 0.25 0.26 0.009
PolyDiagNorm 73.03 0.85 0.41 0.005

SymmetricNorm 81.85 0.82 0.43 0.005
LowRankNorm 634.50 1.13 0.47 0.005
BlockDiagNorm / / / /

ToeplitzNorm slow / / /
CirculantNorm 77.61 0.73 0.39 0.005
Structured-topo 12.04 0.16 0.20 0.1

Structured-min-dis 12.04 0.16 0.20 0.1

Looking into the training session of structured-topo and CirculantNorm, for example,
structured-topo shows a sharper gradient descent and lower loss after 1000 epochs.
Other parameters also decreased significantly. We can see from the figure that the loss
can be further reduced even though it is at the same level as the AutoDiagonalNorm
in baseline autoguides. By setting better learning rates or optimizer’s parameters,
loss can be further reduced. In general, covariance-based autoguides with the same
parameters have relatively small gradients and slow convergence. As a result, we should
take into consideration the structured autoguide when analyzing the dataset with high
dimensional latent variables with structured model.

Figure 4.25: Info for structured-topo
from SARS-COV-2 data

Figure 4.26: Info for CirculantNorm
from SARS-COV-2 data

Daily S&P 500 dataset We found that the new autoguides, except PolyDiagNorm,
do not show any improvement in loss. Furthermore, we found that the learned latent
variables have similar ranges, except for h0. Since h0 is the initial point, we infer that if
the initial position of Brownian motion can be learned in the Levy model, then the loss
will be small. The loss fluctuated greatly because the new autoguides may not learn
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this initial point. Therefore, we can have an idea, for example, let the autoguide in a
baseline learn this initial position to determine the empirical distribution, and then use
the learned parameters to re-initialize the model and reduce the variance.

Table 4.6: Testing autoguides on daily S&P 500 dataset

Model LOSS h0 rloc rskew rstability SIGMA

DiagonalNorm -2.81 -0.054 ± 0.101 0.011 ± 0.004 -0.026 ± 0.013 1.722 ± 0.017 2.021 ± 0.058
MultivariateNorm -0.20 0.037 ± 0.064 0.008 ± 0.008 -0.178 ± 0.021 1.152 ± 0.0302 2.182 ± 0.068

LowRankMultivariate -0.36 0.095 ± 0.065 0.001 ± 0.007 -0.298 ± 0.022 0.930 ± 0.034 2.189 ± 0.035
PolyDiagNorm -1.10 0.005 ± 0.194 0.131 ± 0.077 -0.026 ± 0.064 1.674 ± 0.036 0.835 ± 0.010

SymmetricNorm 8.34 0.482 ± 0.00 -0.005 ± 0.000 -0.082 ± 0.000 1.049 ± 0.000 1.668 ± 0.000
LowRankNorm 19.43 0.484 ± 0.043 0.040 ± 0.045 -0.071 ± 0.027 1.047 ± 0.023 1.667 ± 0.069
BlockDiagNorm 7.54 0.560 ± 0.036 -0.003 ± 0.035 -0.043 ± 0.020 1.082 ± 0.020 1.540 ± 0.051

ToeplitzNorm slow / / / / /
CirculantNorm 8.90 0.560 ± 0.000 -0.003 ± 0.000 -0.043 ± 0.000 1.082 ± 0.000 1.543 ± 0.000
Structured-topo 7.96 / / / / /

Structured-min-dis 7.96 / / / / /

We compared the priority order of nodes when running two structured autoguides.
The results obtained in the actual running process are similar, showing that different
inverses can achieve similar results. AutoStructured object in Pyro has no attribute
quantiles so we do not generate the latent variable distributions for AutoStructured .
Below are the results of two reversing algorithms applied to the daily S&P 500 dataset:
Structured-topo: {’r’: 0, ’r t exponential’: 1, ’r t uni f orm’: 2, ’r z exponential’: 3,
’r z uni f orm’: 4, ’r stability’: 5, ’r skew’: 6, ’r loc’: 7, ’v dct’: 8, ’sigma’: 9, ’h 0’:
10}

Structured-min-dis: {’r’: 0, ’sigma’: 1, ’r stability’: 2, ’v dct’: 3, ’r loc’: 4, ’r z expo
nential’: 5, ’r t uni f orm’: 6, ’r z uni f orm’: 7, ’r t exponential’: 8, ’r skew’: 9,
’h 0’: 10}

Both of the inverse dependency models will lead to a similar loss and predictability.
The figures 4.27 and 4.28 show that volatility is approximately equal to the areas of log

Figure 4.27: Log return CirculantNorm
from S&P 500

Figure 4.28: Log return
SymmetricNorm from S&P 500

returns in the last 100 days for CirculantNorm and SymmetricNorm. This uncertainty
has been underestimated because AutoDiagonalNormal was used as an approximate
guide. Hamiltonian Monte Carlo (HMC) [70] or No-U-Turn Sampler (NUTS) [71]
provide more precise uncertainty estimates. We recommend using MCMC sampling
over autoguides in this case as the result is too rough even if the guide is created
with the best of intentions. The gradient exploding problem also occurs when running
ToeplitzNorm on this dataset with high dimensional latent variables.
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Discussions and Conclusions

5.1 Results overview

In comparison to the baseline’s four autoguides, our eight new autoguides have been
tested on six datasets. It is shown that SymmetricNorm and LowRankNorm (new) are
optimized on GMM dataset, and that these two also have relatively large variance
problems. On income dataset, it is found that ToeplitzNorm is the best, and it is able to
learn better density and slope than the basic autoguides. The new autoguide is able to
reduce loss on the data of MNIST, but not as much as the loss obtained by designing
with a traditional inference network. The new autoguide may not perform as well on
OSIC data in terms of loss, but it has a relatively good degree of data fitting, which is
achieved through the posterior. The performance of the structured autoguide on the
SARS-CoV-2 dataset is on par with the baseline autoguides.

In light of the above analysis, one can conclude that autoguides based on covariance
matrices can be useful in models that have relatively low design dimensions and not
so strong dependencies among variables. However, some autoguides based on an
inverted dependency model can be used when the dimensions are relatively large and
the relationships between variables are complicated. The initial autoguides, in general,
can generally be improved. We also discovered that autoguide cannot be used in
deep generative models. As an example, variational auto-encoders still need to use an
nn-based encoder as an inference network rather than an autoguide model.

5.2 Discussions and future works

There are a lot of problems during training, such as initialization. When testing SARS-
CoV-2 and OSIC datasets, the initial value for the loc and scale is relatively large,
which leads to the problem of gradient explosion in some algorithms when dealing
with high dimensions, so it is necessary to greatly reduce the initial value of loc and
scale. ToeplitzNorm autoguide runs very slowly when dealing with large dimensions.
It is also necessary to judge that the determinant of all submatrices is larger than zero
to keep positive definite. Thus, for high-dimensional matrices, it may be necessary to

39
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use Scipy’s algorithm to expand the matrix and convert it to a positive definite matrix.
Scipy does not yet support computing torch tensor with gradients, so the scale cannot
be trained. We can solve this problem by adding scale to loc or by multiplying scale by
the product of covariance matrices. Besides, we must compromise between mean and
variance. Daily S&P 500 and OSIC dataset indicate that although the new autoguide
performs well in inferring mean parameters, the variances are large, which means that
the confidence interval is uncertain. It is necessary to devise a method for gradually
reducing the scale, leaving aside the manual adjustment method mentioned above.

Baseline selection is the subject of another discussion. At present, datasets are selected
based on autoguide availability, but for some datasets with hidden variables of higher
dimensions, other methods may be needed to compare autoguides, such as MCMC [2],
NUTS [71], and other well-performed sampling methods, rather than only baseline
autoguides. Our future plans include incorporating state-of-the-art inference methods
and sampling-based methods. Furthermore, we might include the IC-based RNN style
autoguide in the future.

Also, we found that although different seeds get similar results, the more accurate
method of getting report loss or accuracy still needs to be averaged by testing different
seeds. This is to demonstrate that the method is robust.

5.3 Conclusions

Six new autoguides based on different types of covariance matrices were implemented
in this project, which are PolyDiagNorm, SymmetricNorm, LowRankNorm, BlockDiag-
Norm, ToeplitzNorm, and CircularNorm. With latent-to-observed style and observed-to-
latent style, we use the implemented AutoStructured-faithful and our new autoguides
Structured-topo and Structured-min-dis, which are based on topological ordering of
the original graph and minimum distance orderings from the observed node. Together
with another three baseline autoguides AutoDiagonalNormal, AutoMultivariateNormal
and AutoLowRankMultivariateNormal, we perform the guide tests on some bench-
marking datasets in classical inference problems and come into the conclusions for
each individual dataset. In addition, we find some general rules that covariance-based
autoguides improve some aspects when latent variables are low dimensional, but inverse
dependency-based autoguides improve some aspects when latent variables are high
dimensional and complicated in structure. Autoguides are not suitable for inferring
latent variable parameters in deep generative models, such as variational autoencoders
and deep markov models. The inference network should instead be an neural network
based encoder (guide).
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Appendix A

Others

A.1 Code implementations

This github repository contains more results and the full implementation of the code:
https://github.com/JIAQING-XIE/advi_nips. The dataset and plotting imple-
mentation were adapted from http://github.com/pyro-ppl/pyro.

46

https://github.com/JIAQING-XIE/advi_nips
http://github.com/pyro-ppl/pyro

	Introduction
	Motivation
	Objectives
	Main contributions
	Report outlines

	Background
	What is inference
	Bayesian inference
	Concepts
	Extension on Bayes

	Variational inference
	Concepts
	Optimization problem
	Variational expectation maximization
	Forms of variational inference

	Probabilistic Programming
	Definition and Languages
	Main PPL: Pyro

	Bayesian Networks (BN)
	Definition
	Important Properties of BN
	BN with Variational Inference


	ADVI and potential improvements
	Problem Restatement
	ADVI
	Learning Inverse Dependencies
	Observed to latent (Upstream)
	Latent to observed (Downstream)

	Covariance Matrices' Variants
	PolyDiagNorm
	SymmetricNorm
	LowRankNorm
	BlockDiagNorm
	ToeplitzNorm
	CirculantNorm

	Inference Compilation
	Difference from Variational Inference
	Architecture


	Evaluation
	Environment settings
	Datasets and tasks
	GMM data
	National Income Dataset
	MNIST
	OSIC Pulmonary Fibrosis
	Daily S&P 500 dataset
	SARS-COV-2

	Tested autoguides
	Aims of experiments (tasks)
	Results

	Discussions and Conclusions
	Results overview
	Discussions and future works
	Conclusions

	Bibliography
	Others
	Code implementations


