
Travelling Salesman Problem Solving

Student number: s2001696

March 25, 2020

1 2-Approximation Algorithm Declaration

Travelling salesman problem(TSP) is described as: given the graph G(V,E), where V are the
vertexes, E are the edges and there exists (u,v)∈E, we should find an optimal Hamiltonian cycle
, which satisfies the equation: C(A) = min

∑
(u,v)∈A c(u, v)

The approximation solutions are some of the best polynomial algorithms due to TSP prob-
lem, which of them is called 2-approximation algorithm, which is bounded to O(|E| ∗ log|V |)[1].
The prerequisite for the approximation algorithm is that the problem should satisfy the triangle
inequality. Obviously, if we take the Euclidean distance between the cities as our metric(cost
function), definitely it satisfies the following triangle inequality: r(u, v) ≤ r(u,w) + r(w, v) , since
the sum of the length of two sides of the triangle is always larger than the other side.

The 2-approximation algorithm is mainly based on Minimum Spanning Tree(MST) and the
procedure of pre-order traversal. Given an undirected graph, we can choose the city that we start
with. Suppose the starting point is the coordinate of the city in the first line of the .txt document.
Suppose that U is the set that involves all the vertexes in the graph, V is the set that the cities
have been visited once, while U-V is the set that the cities haven’t been visited yet.

Beginning with taking the first city a from the set U, first we add it into V, and delete it from
U-V. Finding the next vertex that is related to a and make the shortest path. Add b into V and
delete it from U-V. So the next step is to find the third city c, which is related to either a or b
and makes the total length the shortest, so it can be reached either from a or b. We can clearly
see that this strategy is the same as Prim MST algorithm.

The next step is to traverse the whole tree pre-orderly. The reason why we do not try a post-
order traversal or a in-order traversal is that 2-approximation algorithm is a greedy algorithm.
And according to the property of a binary tree, the left leaf is always smaller than the right one
if the node has a right leaf. But we are always trying to find the shortest path in the procedure,
so we choose preorder traversal.

The final step is to calculate the distance of the returned queue of our algorithm.

Algorithm 1 Approx-TSP

1: procedure MyProcedure
2: Select the first city as the root vertex
3: loop:
4: if visited vertex 6= ∅ then compute a minimum spanning tree from the root vertex
5: end if
6: all cities have been visited.
7: Pre-order traversal
8: end procedure

1

2 Algorithm

The time complexity of the 2-approximation is about O(|E| ∗ log|V |), which is also equal to
O(|V 2| ∗ log|V |). The time for traversing the whole vertex matrix spends about |V 2|, while
traversing the tree can spend log|V |.

The higher bound for this algorithm is about O(V 3) while the lower bound is about O(V 2).
Therefore, it’s a polynomial time based approximation algorithm. And its solution is no more
twice than the optimal value[1].

The function is being defined in the graph.py as prim MST preorder(self). Just type
g.prim MST preorder() and followed by g.tourValue(), we will get the solution. If we take
cities50 as an example, it will shows 3477.305135479123

Algorithm 2 Approx− TSP

Require: dists, number of cities
1: function prim TSP preorder(dists)
2: visited id← 0
3: T ← inf
4: while visited numbers < number of cities do
5: not visited id← NIL
6: not visited id← U − V
7: min weight,min from,min to← inf
8: for from city ∈ visited id do
9: for to city = 1→ number of cities do

10: weight = dists[from city][to city]
11: if from city 6= to city & weight < min weight & to city ∈ no visited id

then
12: min to← to city
13: min from← from city
14: min weight← dists[min from][min to]
15: end if
16: end for
17: end for
18: visited id.append(min to)
19: T [min from][min to] = dists[min from][min to]
20: T [min to][min from] = dists[min to][min from]
21: end while
22: is visited← False
23: stack ← 0
24: walk ← NIL
25: while stack.length > 0 do
26: node← stack.pop()
27: walk.append(node)
28: is visited.node← True
29: nodes← T.node! = inf
30: if nodes.length > 0 then
31: if is visited.node == False then
32: node r ← reversed(nodes)
33: stack ← stack + node r
34: end if
35: end if
36: end while
37: end function

2

3 Experiments

3.1 Euclidean setting

According to the Euclidean setting, we promise that we have generated some of the graphs. The
only thing is to make the coordinates smaller or larger. Here we take the ”cities50.txt” as the
experiment example. X and y coordinates are multiplied individually by the coefficient, which
is tuned from 0.001 to 2. We admit a larger coefficient, but it will cost the calculation time.
However, generally it will also show the same tendency as the coefficient goes to the infinity.

From the experiment, we can find that the two opt heuristic is always the best algorithm,
which is the closet to the optimal solution, followed by greedy algorithm and 2-approximation
algorithm. However, swap heuristic performs bad, even the coefficient has been applied to. The
reason is that swap algorithm would not find the global optimal route. Instead, after several
iterations, it is mmuch harder to reach the local optimal route. It terminates at an early time.

We can also figure out that the effect of greedy algorithm is better than approximation al-
gorithm but worse than two opt. Since approximation algorithm is based on both greedy and
minimum spanning tree. The MST might give another route that is different from what greedy
results in. Totally, these three algorithms perform well no matter how we change the coefficient.
The functions are test Euclidean setting x() and test Euclidean setting y() in tests.py.

Figure 1: Euclidean setting for x coordinate Figure 2: Euclidean setting for y coordinate

3.2 Metric setting

There are different metrics when the problem fits triangle inequality, such as Euclidean distance,
Hamming distance and Chebyshev distance. We would like to find whether a different metric can
bring something inspiring. Definitely, we find that the Chebyshev distance shows a lower cost of
the city tour. Also, the two opt, greedy and approximation algorithms perform well on each of
three metrics. The function is test metric setting() in tests.py.

3.3 Non-metric setting

We know from the TSP problem that if the graph does not fit the triangle inequality, then it
becomes a non-metric problem. In this case, we can simply multiply the distance by the weight(or
probability, they are the same during the calculation). The result is shown in figure 4, where the
greedy and two opt algorithm keeps the best. The approximation performs badly because we have
mentioned its prerequisite. It should fit the triangle inequality to ensure a less-than twice of the
optimal value. Also the swap algorithm becomes better since the distance becomes more average
that it’s easier to reach the global optimal value. The function is test non metric setting() in
tests.py.

3

Figure 3: Different metrics Figure 4: Non metric setting

3.4 dp algorithm

Dynamic programming is one of the exact solution for the TSP problem. However, the time
complexity reaches O(2N ∗ N2).[1] So it’s not the polynomial time solution. However, when the
input size N is small enough, the task can still be completed in a very short time. And the
comparison between heuristics and dp algorithm becomes legal.

In the experiment, the input size, which is the number of the cities, has been set in the range
of 5 to 14. The result is shown in the Figure 5. We can find that the dynamic programming is
always the optimal solution. When the input size is smaller than 7, the five algorithms show the
same result. And when the number of the cities grows, we can find that two opt heuristic curve
is very close to that of dp one.

The consumption of the time is also compared. It’s not surprising since we have mentioned
its time complexity. It increases exponentially when the input size increases. The functions are
test dp tsp(g) and test smaller input size() in tests.py.

Figure 5: Comparison between heuristics and
dp

Figure 6: time comparison between two opt
and dp

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Intro-
duction to Algorithms, Third Edition (3rd. ed.). The MIT Press.

4

