
ADLG Project 1: Training GNNs

Ziheng Chi, Federico Felizzi, Jiaqing Xie
Student ID: 22-945-471, 09-901-240, 22-943-914

Department of Computer Science, ETH Zurich
{zihchi, ffelizzi, jiaxie}@student.ethz.ch

1 Transductive Learning (Click Colab Link here)
1.1 Data Exploration. Cora dataset has 2708 nodes and 5278 edges, with 1433 features for each
node. The longest shortest path (diameter) is 19. Since the graph is not fully connected, we choose the
largest diameter among all connected components. Otherwise it should be infinity. Other important
graph statistics are explored such as number of classes: 7, average node degree: 3.90, number of
training nodes: 140 train masks, training node label rate: 0.05, containing isolated nodes: False,
containing self-loops: False, is undirected: True. The numbers of nodes for training, validation and
test dataset are 140, and 500, 1000 respectively.

1.2 Label Propagation with full observations. We employed dictionaries to store information about
neighbors and determined the label of the central node by considering the most common labels among
its neighbors (found in the dictionary values). In case of a tie, we choose randomly. Using this nearest
neighbour classifier, we achieved mean 0.86 accuracy with 0.00 (0.001) standard deviation.

1.3 Baseline without Graph Structure. We used five different supervised learning models: Multi-
layer Perceptrons (MLP), Logistic Regression, Random Forests, Gradient Boosted Trees, and Support
Vector Machine to predict labels, only considering node features as input. Among all models, Logistic
Regression achieved the best performance with mean accuracy of 0.58 and standard deviation of 0.00.

1.4 Untrained GNNs. We generated three types of embeddings: embeddings from untrained GNN

TSNE_1

TS
NE

_2

TSNE GNN embedding

(a) GNN predictions
TSNE_1

TS
NE

_2

TSNE Random embedding

(b) Random vectors
TSNE_1

TS
NE

_2

TSNE Feature embedding

(c) Feature vectors

Figure 1: Visualization of embeddings.
model, real random vectors (same size as the randomized GNN embedding), and vanilla feature
vectors. Then we applied TSNE to visualize those embeddings in a 2D space. This experiment has
shown that GNNs introduce a strong inductive bias, assigning similar embeddings for nodes close
to each other, which could be observed in figure (c). We can observe less clusters in figure (a) with
untrained GNN embedding, with worser performance since GNN model is randomly initialized and
untrained. There’s obviously no clusters shown in figure (b) as the vectors are randomly generated.

We generated three types of embeddings: embeddings from untrained GNN model, embeddings from
untrained MLP model, and real random vectors (same size as the randomized GNN embedding).
Then we applied logistic regression with these embeddings for classification. The results obtained
from three methods varied significantly. We found that the embeddings generated from GNN can

ADLG 23, ETH Zurich

https://colab.research.google.com/drive/11DFlohBfxWtGzoqpE9NalXtwwKUM85GK?usp=sharing


achieve mean accuracy of 0.38 and standard deviation of 0.07, while applying the same algorithm
with real random vectors only achieved 0.14 and 0.00 respectively.

1.5 Trained GNNs. We have applied a two-layer GCN model to perform node classification:

ŷ = Softmax(Linear(GCN(ReLU(GCN(x; Θ)))))

We achieved an accuracy of 0.805 and a standard deviation of 0.004 after three runs on test set. A
good seed would achieve a better result around 0.82.

1.6 Visualizing Graph Attention Networks. We replaced the GCN layers in task 2.5 by GAT layers
to perform the same task:

ŷ = Softmax(Linear(GAT(ReLU(GAT(x; Θ)))))

We achieved an accuracy of 0.804 and a standard deviation of 0.000 after three runs on test set.
A good seed would achieve a better result around 0.82. Then we performed a forward pass and

Visualization of node 95

0.0

0.2

0.4

0.6

0.8

1.0
Visualization of node 519

0.0

0.2

0.4

0.6

0.8

1.0
Visualization of node 748

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Visualization of attention weights from one-hop neighbors.
extracted the attention weights from the last GAT layer. We randomly chose three nodes from test set
and visualized the subgraphs centered around these nodes in Fig. 2. Node colors identify labels, and
edge colors illustrate attention weights. We found that neighbours with the same ground truth label
were assigned higher attention than those with different labels in GAT layers.

Model Mean Standard Deviation
Majority Estimation 0.86 0.00

Multi Layer Perception 0.45 0.00
Logistic Regression 0.58 0.00

Random Forests 0.57 0.02
Gradient Boosted Trees 0.53 0.01
Support Vector Machine 0.56 0.00

Untrained GNN 0.38 0.07
Untrained MLP 0.23 0.03

Random Embeddings 0.14 0.00
GCN Layers 0.81 0.00
GAT Layers 0.80 0.00

Table 1: Results of each subtask in task 2.

2 Inductive Learning (Click Colab Link here)

2.1 Baseline Implementation. In this task, we choose GCN [4], GraphSAGE [3], GAT [5], and GIN
[6] as our backbone GNN model. A better design of GNN architectures leads to better performance
[9]. As specified in designing space for graph neural networks, a consecutive pre-processing MLP
layers, message passing layers with intra-connection, and post-precessing MLP layers ensures a
relatively reasonable GNN design. We fix the number of pre-processing MLP layers to be 2, and the
number of post-precessing MLP layers to be 3. The message passing blocks of GNN is defined as:

ht = PReLU
(
Dropout

(
BN

(
Wth

t−1 + bt
)))

(1)

2

https://colab.research.google.com/drive/1Es9unWetq21Dur5HzQqBGfvugXaVu8y9?usp=sharing


where we use PReLU as our main activation. We fixed some hyper-parameters for testing: model
depth = 2, dimension of graph embedding = 128, dropout rate = 0.15, training epochs = 800,
aggregation method = mean, batch size = 64, num of tests = 100 which is required as minimum
numner of test samples. We also allow skip connections between layers. GraphSAGE and GIN have
shown the best performance, which achieved accuracy of 0.55 (> 0.40) individually. GAT has the
worst performance since graph attention doesn’t work well in graph-level tasks as it focused more on
node representations. The results are presented in table 2.

2.2 Improvement on pooling. Some hierarchical pooling methods [8, 10] successfully solved the
flat problem caused by GNN encountered in graph classification tasks. Some other works considered
additional feature augmentations such as spectral or topological features [1, 2, 7] Especially in
this task, we simply chose one hierarchical pooling methods which is called DiffPool [8]. We use
GraphSAGE as our backbone model for testing DiffPool since it performed the best in task 2.1.
Specifically, we created an additional assignment matrix to learn assignment with a fixed assignment
ratio 0.1, which used the same settings in the original paper of DiffPool. The hidden dimension is
set to 64. Number of test sets is 100 as required. Batch size is equal to 25. We also permuted the
dataset for three times using three seeds to reproduce results. Observing from table 2, we conclude
that using an effective pooling method such as DiffPool will lead to a better performance in graph
classification tasks. We run experiments either locally with GeForce RTX 4070 or Google Colab
V100 GPU. Running with V100 would have similar results with an average accuracy around 0.6 with
assignment ratio 0.25 while other hyper-parameters were unchanged. Unlike in 2.1, choosing specific
seeds didn’t reach 0.6 in average, in 2.2 we could easily choose seeds to reach an accuracy of 0.61.

Model Accuracy
GCN 0.46 ±0.05

GRAPHSAGE 0.55 ±0.04
GAT 0.42 ±0.03
GIN 0.55 ±0.04

DIFFPOOL + SAGE 0.61 ±0.01

Table 2: Classification accuracy on Enzymes Dataset with backbone and improved GNN models.

3 Custom Message Passing Layers (Click Colab Link here)

We supplemented the CustomGraphSage layer. For the forward function, we follow the equation
(2) and (3) in project description, considering the effect of normalization. For the message func-
tion, we simply pass xj as the neighbourhood information. For the aggregate function, we take
the advantage of scatter function in torch_scatter library with a mean reduce operation. The
propagate function is called by passing edge_index, input x and size. Besides, we have also im-
plemented CustomGraphSageGRU where we replaced the mean aggregation in CustomGraphSage
by GRUAggregation while we kept other functions unchanged. More importantly, we used the
function sort_edge_index defined in torch_geometric.utils to avoid further permutation
augmentation.

We have compared the performances of three GNN implementations: (1) GNN with
CustomGraphSage layers; (2) GNN with SAGEConv layers; (3) GNN with CustomGraphSageGRU
layers. We fixed the same set of hyper-parameters for all models in experiments: num_layers = 3,
pool = global_mean_pool, pre_processing = False, post_processing = True. Especially, we did
not follow the same GNN design space as we did in task 3, since here we only aim to check the
equivalence of SAGEConv and CustomGraphSage. Final results show that these two classes shown
approximately the same functionality and SAGEConv improves somehow with GRU aggregation.

Model Mean Standard Deviation
CUSTOMGRAPHSAGE 0.31 0.05

SAGECONV 0.33 0.05
CUSTOMGRAPHSAGEGRU 0.42 0.05

Table 3: Comparison of different GNN layers in task 4.

3

https://colab.research.google.com/drive/1Pd6nAMucEDdiTC5jUnoxwcaWj39OUla-?usp=sharing


References
[1] Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gauzere, Sebastien Adam, and

Paul Honeine. Bridging the gap between spectral and spatial domains in graph neural networks.
arXiv preprint arXiv:2003.11702, 2020.

[2] Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? a dissection
on graph classification. arXiv preprint arXiv:1905.04579, 2019.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[4] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2016.

[5] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[6] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

[7] Mingqi Yang, Yanming Shen, Rui Li, Heng Qi, Qiang Zhang, and Baocai Yin. A new perspective
on the effects of spectrum in graph neural networks. In International Conference on Machine
Learning, pages 25261–25279. PMLR, 2022.

[8] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. Advances in neural
information processing systems, 31, 2018.

[9] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33:17009–17021, 2020.

[10] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
Hierarchical graph pooling with structure learning. arXiv preprint arXiv:1911.05954, 2019.

4


	Transductive Learning (Click Colab Link here)
	Inductive Learning (Click Colab Link here)
	Custom Message Passing Layers (Click Colab Link here)

