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Abstract

This paper aims to build an equivalence between online learning and private
learning. It is equivalent to prove whether online learning leads to private learning
and vice versa. The second direction has been supported by previous research. The
first direction is proven in this report. As an alternative of online learning, this
paper introduces finite littlestone classes. This paper then divides the proof into
two parts: finite littlestone dimension to stable learnability and stable learnability
to differential private learning. It also answers some followed problems.

1 Introduction

Online learning and private learning are two important and hot topics in machine learning theory.
There’s an open question that whether online learning and private learning are equivalent to each
other 1, which is equivalent to state that given a class of predictorsH, ifH is differentially private
learnable, then it must be online learnable, and vice versa. Importantly, we restrict the learning
problems to binary classification problems and leave the regression setting as future works. In order
to prove this, two iff. conditions are considered.

DP-learning ⇔ Littlestone dimension is finite Previous work has proved that a private PAC
learner hinted a corresponding finite littlestone dimension Alon et al. [2019b]. The selected paper
supplemented the converse direction Bun et al. [2020], therefore combining two results suffices
to show the equivalence of private learning and finite littlestone dimension. In this project, we
mainly focus on the latter part. Global stability is defined in this paper as an intermediate step for
proofs. When proving from finite littlestone dimension to global stable learning, Standard Optimal
Algorithm (SOA) is involved by operating on a pair of samples. We want to prove that such SOA(·)
as an algorithm satisfies the definition of global stability that is also generalized well for some
finite number of samples. When proving from global stable learning to private learning, stable
histograms are involved and we need to construct such a private learner with some privacy/accuracy
parameters satisfying stable conditions, as well as satisfying the statement of a generic private learner
Kasiviswanathan et al. [2011].

If H is online-learnable ⇔ its Littlestone dimension is finite Previous works have stated this
conclusion with regard to the regret which depends on corresponding littlestone dimension and
number of samples Littlestone [1988], Ben-David et al. [2009]. In our selected paper, authors also re-
stated this conclusion when introducing the relationship between online learning and finite Littlestone
dimension Bun et al. [2020].

The organization of this paper is structured as follows: Section 2 presents an overview of current
research in PAC learning and differential privacy in learning. Section 3 delves into the principles of
online learning, global stability, and differential privacy. Section 4 is dedicated to demonstrating that

1For simplicity, we may write "approximate private PAC learning" as "differentially private learning" or "DP
learning" in this report. However, the hardness of proper pure private learning, improper pure private learning,
approximate private learning, and are all strongly separated in the PAC model.
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a finite Littlestone dimension implies stable learnability. Section 5 establishes that stable learnability
leads to differential privacy in learning. Finally, Section 6 addresses subsequent questions related to
this topic.

2 Extensive Literature Review

This paper is related to characterizing the sample complexity of approximate differential private
learning and building a connection between it and online learning. While online learning has been
extensively studied and well understood, differentially private learning is comparatively new and less
understood. Before moving on, we recall that by definition approximate differential private learning
is not harder than pure differential private learning, and improper learning is not harder than proper
learning.

A line of work has aimed at understanding the sample complexity of differentially private PAC
learning. Kasiviswanathan et al. [2011] first introduced the concept of differentially private PAC
learning and proposed a generic learner based on Occam’s razor algorithm, which requires O

(
logH

ε

)
samples to learn a hypothesis class H . This result is not satisfying because it excludes infinite
hypothesis classes. Beimel et al. [2014] studied a particular hypothesis class whose VC dimension
is 1 and showed that the sample complexity of proper pure private PAC learning on this hypothesis
class can not be upper bounded by its VC dimension. They also showed that the sample complexity
of improper pure private PAC learning on this hypothesis class only requires O(1) samples.

Beimel et al. [2019] introduced a notion called probabilistic representation and proposed a new
measure RepDim(H) of hypothesis classes H , which is the size of the smallest probabilistic
representation of the concept class. They showed that the sample complexity of improper pure private
PAC learning is Θ(RepDim(H)).

Recall that a measure of hypothesis classes is called the little stone dimension, and it is used to
characterize the sample complexity of online learning. Feldman and Xiao [2015] showed that the
little stone dimension is also a lower bound of sample complexity of pure private PAC learning. This
work showed a connection between online learning and private learning: private learning is not easier
than online learning.

All the work mentioned previously is about pure differential private PAC learning. Since approximate
private learning is easier than pure private learning, one may hope it can learn a "larger" hypothesis
class. Bun et al. [2015] studied proper approximate private PAC learning on threshold functions, and
established a lower bound of sample complexity. This lower bound implies that the VC dimension is
also not an upper bound of sample complexity of approximate private PAC learning. This showed
that approximate private PAC learning is also strictly harder than non-private PAC learning. Together
with Alon et al. [2019a], we know the sample complexity of proper and improper approximate private
PAC learning is lower bounded by Ω(log∗(Ldim(H))).

Finally, this paper proved that the sample complexity of approximate private learning can also be upper
bounded by the little stone dimension (2O(Ldim(H))). It achieved this by building a differentially
private learning algorithm using an online learning algorithm. Thus, an equivalence between online
learning and private learning was established.

3 Preliminaries

As stated, it is difficult to directly prove from online learning to private learning, therefore an
introduction of the Littlestone dimension as an intermediate step is necessary. In this section, we first
complete the proof that an online learner implies a finite Littlestone dimension. Following that, we
define global stability, generalization, differential privacy, and differential private PAC learning in
order to provide intuitions for proving that every concept class with finite Littlestone Dimension can
be learned by a differential private learner.

3.1 Online Learning and Littlestone Dimension

Online Learning Online learning is to make real-time predictions on a sequence of data. Suppose
we have a hypothesis class H = {h : X → {±1}}, and a sequence of data (x1, y1), ..., (xn, yn) ∈
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X × {±1}. From the samples, one instance is observed. The predicted label ŷt for this instance is
given by a h ∈ H. As soon as true label yt is observed, loss is calculated and the hypothesis class is
updated according to some metrics. The loop is iterated until it has been executed for n times. The
main goal is to minimize the regret, which refers to the number of mistakes compared to the best
hypothesis inH:

R(n) =

n∑
t=1

1[yt ̸= ŷt]− min
h∗∈H

n∑
t=1

1[yt ̸= h∗]

Littlestone Dimension Firstly we introduce mistake bound in online learning and state how this
mistake bound is related to the required Littlestone dimension.
Definition 1 (Mistake bound). Let H be a hypothesis class. M is an online learning algorithm.
Given any sequence S = (x1, y1), ..., (xn, yn) ∈ X × {±1}. We denote MA(S) as the number of
mistakes that M makes on samples S. We denote MA(H) as the supremum of MA(S) over all
possible S, which is referred to as the mistake bound.

If we apply consistent or halving online learning algorithm Shalev-Shwartz and Ben-David [2014],
we could ensure that the mistake bound is upper bounded. On the contrary, Littlestone dimen-
sion (denoted byLdim(·)) is the lower bound of mistake bound, proposed by Littlestone which
characterizes learnability:
Theorem 1 (MA(H) ≥ Ldim(H) Littlestone [1988]). Any online learning algorithm might make at
least Ldim(H) mistakes. And there exists an online learning algorithm that makes exactly Ldim(H)
mistakes. This holds only for realizable settings.

The online learning algorithm that could match MA(H) with Ldim(H) is called Standard Optimal
Algorithm (SOA). This algorithm is also essential for proving a global stable learner which will be
mentioned later. A mistake tree is constructed to indicate Littlestone dimension, which is equivalent
to the depth of the largest complete tree which is shattered by H, where each sample is mapped
to each node in this complete tree. It makes sure that the littlestone dimension is reduced by 1 by
each round, so overall it makes up to Ldim(H) mistakes. Taking MA(H) ≥ Ldim(H) and MA(H)
≤ Ldim(H)⇒MA(H) = Ldim(H). Here we ignore the detailed description of the SOA algorithm.

In theorem 1 we state that SOA only holds for realizable settings. However, it could also be extended
to non-realizable settings by case analysis on new coming sample (xt+1, yt+1) since we already
know that (x1, y1), ..., (xt, yt) ∈ X × {±1} are realizable. If the new coming sample still makes the
hypothesis realizable, we still apply the original update rule in SOA. If new coming sample makes it
unrealizable, we set ht+1(xt) = ht(xt) and ht+1(xt+1) = yt+1 to make it realizable.

Online learning⇔ Finite Littlestone dimension
Theorem 2 (Online learning ⇔ Bounded Regret w.r.t. Ldim(·) Ben-David et al. [2009]). If
LDim(·) is finite, then there exist an online learning algorithm M whose regret is bounded by
O(
√
Ldim(H) · T ) and vice versa.

Therefore it is equivalent to say thatH is online learnable iff. its Ldim(·) is finite. Then the remaining
parts are proving from the finite Littlestone dimension to a private learner.

3.2 Global Stability

There are many types of stability, including uniform hypothesis stability, PAC-Bayes stability and
many others. In this research, we mainly focus on global stability. It’s different from the previously
mentioned stability since such stability requires resampling the entire input instead of changing
samples in a local way. Here we give the definition of global stability.
Definition 2 (Global Stability). A randomized algorithmM : Xn → Rk is called (n, η) globally
stable if for sample size n ∈ N, η > 0, and a hypothesis h ∈ H whereH is a finite hypothesis class
such that the following probability holds:

Pr
S∼Dn

[M(S) = h] ≥ η

where D is a realizable distribution.
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It holds when applying learning algorithms to those finite hypothesis classes. Global stability indicates
the following property regarding generalization.

Lemma 1 (Global stability towards generalization). Hypothesis class is based on the setting of binary
classification, where we suppose the classH ∈ {±1}X . We assume that ourM is realizable which
means that the generalization error is zero for any sample S: lossS(M(S)) = 0. If M is (n, η)
globally stable, then considering h ∈ H in global stability, the generalization error of h on realizable
D is bounded by:

lossD(h) ≤
ln( 1η )

n

Proof. Let α = lossD(h). Event 1 E1: h is consistent with input S⇒ Pr[E1] = (1− α)n. Event 2
E2: M(S) = h ⇒ Pr[E2] ≥ η (global stability). We know that if h is realizable, then it must be
consistent with input, therefore we have: η ≤ Pr[E2] ≤ Pr[E1] = (1 − α)n ≤ e−αn. Solve for α

we have lossD(h) = α ≤ ln( 1
η )

n . This means that if a online learner is a global stable learner, then it
should generalize well.

This gives us the intuition when proving from finite Littlestone dimension to a global stable learner.
Suppose finite Littlestone dimension Ldim(·) is equal to d. Then we are going to find 1) a specific
finite η which is related to d, a specific largest number of n samples that are generated from distribution
D, which is related to d and η and is also finite. If these two parameters are found under the finite
Littlestone dimension setting, then the direction finite Ldim(·)⇒ global stable learner holds.

3.3 Differential Privacy

Definition 3 (Differential privacy). A randomized algorithmM : Xn → Rk is said to be (ε, δ)-
differentially private if for all measurable S ⊆ Rk and all neighboring datasets x, y ∈ X :

Pr[M(x) ∈ S] ≤ eε Pr[M(y) ∈ S] + δ ,

where two datasets x, y are said to be neighboring if dist(x, y) ≤ 1 (i.e., for dist(,) being the
Hamming distance, if they only differ in (at most) one entry).

There is a nice property called post-processing property.

Theorem 3 (Post-processing). LetM : Xn → Rk be an (ε, δ)-differentially private algorithm. Let
f : Rk → Rk be an arbitrary mapping. Then f ◦M is also (ε, δ)-differentially private.

We also recall the composition theorem of differential privacy.

Theorem 4 (Composition theorem). Let M1 : Xn → Rk be an (ε1, δ1)-differentially private
algorithm andM2 : Xn → Rk be an (ε2, δ2)-differentially private-algorithm, then their combination
M1,2(x) = (M1(x),M2(x)) is (ε1 + ε2, δ1 + δ2)-differentially private.

A randomized algorithm is said to satisfy pure and approximate differential privacy if δ = 0 and only
satisfy approximate differential privacy otherwise. A differentially private PAC learning algorithm is
just any PAC learning algorithm which satisfies differentially privacy constraints.

As mentioned in section 2, Kasiviswanathan et al. [2011] proposed a generic learner which requires
O
(

logH
ε

)
samples to learn a hypothesis class H . This is stated formally in the following theorem.

This learner is used in the proof in this paper.

Theorem 5 (Generic learner). Let H ⊆ {±1}X be a collection of hypothesis. For

n = O

(
log(|H|) + log(1/β)

αε

)
there exists an (ε, δ)−differentially private algorithm GenericLearner : (X × {±1})n → H such
that the following holds.

Let D be a distribution over (X × {±1}) such that there exists h∗ ∈ H with lossD(h∗) ≤ α. Then
on input S ∼ Dn, algorithm GenericLearner outputs, with probability at least 1− β, a hypothesis
ĥ ∈ H such that lossD(ĥ) ≤ 2α.
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Another technique in differential privacy that is used is called stable histogram.
Theorem 6 (Stable Histogram ( Korolova et al. [2009])). Let X be any data domain. For

n ≥ O

(
log(1/ηβδ)

ηε

)
there exists an (ε, δ)-differentially private algorithm Hist which, with probability at least 1− β, on
input S = (x1, ..., xn) outputs a list L ⊂ X and a sequence of estimates α ∈ [0, 1]|L| such that

• Every x with freqS(x) ≥ η appears in L and

• For every x ∈ L, the estimate ax satisfies |ax − freqS(x)| ≤ η

4 Finite Littlestone dimension implies global stable learning

Theorem 7 (Bounded Ldim(·)⇒ Global Stable Learner). LetH be a hypothesis class woth a finite
Littlestone dimension d ≥ 1. Assume that α > 0. Set

m = 22
d+2+14d+1 · ⌈2

d+2

α
⌉

There exists a randomized alogrithmM : X × {±1}m → {±1}X and a hypothesis f such that:

Pr
S∼Dm

[M(S) = f ] ≥ 1

(d+ 1)22d+1
and lossD(f) ≤ α

where D is a realizable distribution.

Algorithm 1 Choosing Dt

1: Dt ← Dt(t, n) are defined by induction on t:
2: D0: outputs the empty sample ∅ with probability 1

3: if Pr[SOA(S ◦ T ) = f ] ≥ 2−2d+2

then
4: Dk is un-defined if Dk−1 is un-defined
5: end if
6: for each time step t do:
7: Draw S0, S1 ∼ Dt−1 and T0, T1 ∼ Dn

8: f0 = SOA(S0 ◦ T0), f1 = SOA(S1 ◦ T1), ◦ means append
9: if f0 = f1 then

10: goto 4
11: end if
12: Pick x ∈ {x : f0(x) ̸= f1(x)} and sample y ∼ {+1,−1} uniformly
13: if f0(x) ̸= y then
14: output S0 ◦ T0 ◦ (x, y), else S1 ◦ T1 ◦ (x, y)
15: end if
16: end for

Distribution Dt From algorithm 2, we could observe that t · (n+ 1) samples are generated, where
t · n samples are generated from D and t samples are generated from line 12. They are called
tournament samples.
Proposition 1. Suppose that Dt is well defined. And we apply SOA algorithm on S ◦ T , where
S ∼ Dt and T ∼ Dn, then

1. Each tournament example forces a mistake with SOA(·)

2. SOA(S ◦ T ) is consistent with T

The first item is correct when we look from line 12 to line 13 in algorithm 2. When it doesn’t
make a mistake on SOA(S0, T0)(x), which means that SOA(S0, T0)(x) = y, then we must have
SOA(S1, T1)(x) ̸= y. Otherwise it violates the inequality of SOA(S0, T0)(·) and SOA(S1, T1)(·).
The second item is also correct if S ◦ T is realizable by H. We’ve already mentioned that if h is
realizable, then it must be consistent with input. If S ◦ T is not realizable byH, then we simply apply
the extension rules in 3.1 to make it realizable.
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Existence of Frequent Hypotheses
Lemma 2 (global stability). There exists t ≤ d (Ldim) and an hypothesis f s.t.

Pr
S∼Dt,T∼Dn

[SOA(S ◦ T ) = f ] ≥ 2−2d+2

Proof. Proof is given by contradiction. Suppose that Dd is well defined, and Pr
S∼Dd,T∼Dn

[SOA(S ◦

T ) = f ] < 2−2d+2

. Let ρt be the probability that t tournament samples are consistent with f. We
know that at iteration t, all previous tournament samples in S0 and S1 are consistent with f respectively.
Therefore the probability of this prior is given by ρ2t−1. From line 3 of the algorithm to obtain Dt, we
know that the probability that f0 = f1 is no larger than 2−2d+2 ≤ 8 · 2−2d+2

. So the the probability
that f0 ̸= f1 is larger than 1− 8 · 2−2d+2 ≥ −8 · 2−2d+2

. The probability of random sampling of y
equal to the target hypothesis is equal to 1/2 since y ∈ {±1}. Put all things altogether we have:

ρk ≥
1

2
[ρ2t−1 − 8 · 2−2d+2

]

The rest of the proof is to use induction to prove ρt ≥ 4 · 2−2t+1

. Firstly it holds for t = 1 since
ρ0 = 1, then we suppose that it holds for t− 1. Then for t, we have

ρt ≥
1

2
[ρ2t−1 − 8 · 2−2d+2

] ≥ 1

2
[(4 · 2−2t)2 − 8 · 2−2d+2

] (1)

= 8 · 2−2t+1

− 4 · 2−2d+2

≥ 4 · 2−2t+1

(2)

The last inequality holds since 4 · 2−2t+1 ≥ 4 · 2−2d+2

for all t < d, where t, d ∈ N+. Therefore
ρt ≥ 4·2−2t+1 ≥ 4·2−2d+2 ≥ 2−2d+2

. Let’s consider the case when t = d, we know from proposition 1
that it enforces a mistake for each round. We also know that for SOA, the largest number of mistakes
is equal to Ldim = d, therefore, if all tournament samples in S ∼ Dd is consistent with f, then
SOA(S) = SOA(S ◦ T ) = f , therefore, Pr

S∼Dd,T∼Dn
(SOA(S ◦ T ) = f) ≥ ρd ≥ 2−2d+2

which

contradicts the initial proposition above and the proof ends.

Generalization Bound
Lemma 3 (generalization). Suppose that the distribution Dt is realizable, if a hypothesis f satisfies:

Pr
S∼Dt,T∼Dn

(SOA(S ◦ T ) = f) ≥ 2−2d+2

then it generalizes well: lossD(f) ≤ 2d+2

n

Proof. We use the similar proof step as we introduced in the generalization bound in lemma 1.
First we let α = lossD(h). Event 1 E1: f is consistent with T ⇒ Pr[E1] = (1 − α)n. Event
2 E2: SOA(S ◦ T ) = f ⇒ Pr[E2] ≥ 2−2d+2

. We know if h is realizable, then it must be
consistent with input T⇒ Pr[E1] ≥ Pr[E2] ⇒ 2−αn ≥ e−αn ≥ (1 − α)n ≥ 2−2d+2

. Therefore,
αn ≤ 2d+2 ⇒ lossD(h) = α ≤ 2d+2

n . Littlestone dimension is finite, as well as the input sample
size n, therefore the upper bound is bounded, then the generalization loss is bounded on realizable
distribution D. Proof ends.

Monte-Carlo Variant of Dt Notice in algorithm 2 that there’s a high probability that SOA(S0 ◦
T0) = SOA(S1◦T1). We may generate unbounded number of samples⇒ Dt will become undefined.
To avoid this, we add the largest number of examples to be generated before line 7 in algorithm 2: N.
This variant of the algorithm is called Monte-Carlo variant since in Monte-Carlo we sample finite
samples to approximate solution. In order to determine such N, we could first analyze the expectation
of generated samples from Dt: E(Mt), and use it after to bound the probability over N.
Lemma 4 (Expected sample complexity from Dt). Suppose Dt is well defined. Mt is the number of
samples that are generated at round t, then

E[Mt] ≤ 4t+1 · n
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Proof. There are three steps in this proof. 1) E[M0] = 0 since for D0 it generates nothing. 2) We
instead prove that

E[Mi+1] ≤ 4E[Mi] + 4n

where i ∈ (0, t). 3) If 2) is true, using induction we have:

E[Mt+1] ≤

(
t+1∑
i=1

4i

)
n ≤ 4n

3
(4t+1 − 1) ≤ 4t+2 · n

Let’s denote R as the number of times line 7 in algorithm 2 is being executed. R is distributed
geometrically with success prob. θ where

θ = 1− Pr
S0,T0,S1,T1

[SOA(S0 ◦ T0) = SOA(S1 ◦ T1)] (3)

= 1−
∑
f

Pr
S,T

[SOA(S0 ◦ T0) = f ]2 (4)

≥ 1− 2−2d+2

(5)

Last inequality holds since Di is well defined so

Pr
S∼Di,T∼Dn

[SOA(S ◦ T ) = f ] < 2−2d+2

as mentioned in proof of lemma 2. We could re-define Mi+1 as the sum of M j
i+1 over j, which

means 1) M j
i+1 are samples generated in the j-th execution if R > j. 2) 0 if R < j ⇒ Mi+1 =∑∞

j=1 M
j
i+1 ⇒ E[Mi+1] = E[

∑∞
j=1 M

j
i+1]. For the probability ofR > j is (1− θ)j−1 and in the

j-th round two samples from Di and Dn are generated respectively, so

E[M j
i+1] = (1− θ)j−1[2E[Mi] + 2n]

We have proved that θ ≥ 1− 2−2d+2 ⇒ 1− 1/2 = 1/2 Therefore,

E[Mi+1] = E[
∞∑
j=1

M j
i+1] =

∞∑
j=1

E[M j
i+1] (6)

=

∞∑
j=1

(1− θ)j−1[2E[Mi] + 2n] (7)

≤ [2E[Mi] + 2n]

∞∑
j=1

1

2

j−1

(8)

= [2E[Mi] + 2n] · 2 = 4E[Mi] + 4n (9)

2) is proved. Prood ends.

Online Learning Algorithm G We set input sample size n = ⌈ 2
d+2

α ⌉. We set the sample complexity
upper bound N = 22

d+2+14d+1 · n. We draw t = {0, 1, ..., d} uniformly at random. Then we output
h = SOA(S ◦ T ), where S ∼ D̃t, T ∼ Dn. We need to show that:

Pr[G(S) = f ] ≥ 2−2d+2

d+ 1
and lossD(f) ≤ α

where we use lemmas 2 to 4.

1. Using lemma 2, there exists t∗ ≤ d and f∗ such that

Pr
S∼Dt∗ ,T∼Dn

[SOA(S ◦ T ) = f∗] ≥ 2−2d+2

2. Using lemma 3, assume that t∗ is minimal, then

lossD(f∗) ≤ 2d+2

n
≤ α
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3. Using lemma 4 and Markov’s inequality, the probability that number of generated samples
is larger than upper bound:

Pr[Mt∗ > 22
d+2+1 · 4d+1 · n] ≤ E[Mt∗ ]

22d+2+1 · 4d+1 · n
(10)

≤ 4t
∗+1 · n

22d+2+1 · 4d+1 · n
(11)

≤ 1

22d+2+1
(12)

4. Therefore,

Pr
S∼D̃t∗ ,T∼Dn

[SOA(S ◦ T ) = f∗] = Pr
S∼Dt∗ ,T∼Dn

[SOA(S ◦ T ) = f∗ and Mt∗ ≤ 22
d+2+14d+1 · n]

(13)

≥ 2−2d+2

− 1

22d+2+1
omit 1 here (14)

≥ 2−2d−1 (15)

The probability of selecting optimal t∗ is equal to 1
d+1 , then it leads to 2−2d−1

d+1 . Proof ends.

5 Global stable learning implies differential private learner

This part is derived from a "standard" technique. A generic private learner is used after reducing the
number of hypothesis to a comparatively small number.
Theorem 8. Let H be a concept class over data domain X . Let G : (X × {±1})m → {±1}X
be a randomized algorithm such that, for D a realizable distribution and S ∼ Dm, there exists a
hypothesis h such that Pr[G(S) = h] ≥ η and lossD(h) ≤ α/2. Then for some

n = O

(
m log(1/ηβδ)

nε
+

log(1/ηβ)

αε

)
there exists an (ε, δ)-differentially private algorithm M : (X × {±1})m → {±1}X which, given
n i.i.d. samples from D, produces a hypothesis ĥ such that lossD(ĥ) ≤ α with probability at least
1− β.

Proof. This paper proves that algorithm 1 can achieve this task.

Algorithm 1. Require: Stable learner G, Stable Histogram algorithm Hist, generic learner
GenericLearner

Step 1. Let S1, ..., Sk each consist of m i.i.d. samples from D. Run G on each batch of samples
producing h1 = G(S1), ..., hk = G(Sk).

Step 2. Run the Stable Histogram algorithm Hist on input H = (h1, ..., hk) using privacy parameters
(ϵ/2, δ) and accuracy parameters (η/8, β/3), producing a list L of frequent hypotheses.

Step 3. Let S′ consist of n′ i.i.d. samples from D. Run GenericLearner(S′) using the collection
of hypotheses L with privacy parameter (ϵ/2, 0) and accuracy parameters (α/2, β/3) to output a
hypothesis ĥ.

To prove a differential private algorithm is correct, we need to prove both its privacy and utility
guarantees. The privacy guarantee is very easy to prove. This algorithm combined two differential
private algorithm, and their privacy guarantees have been proved in previous work. Thus, by
using theorems 3 and 4, we directly know that this algorithm is (ε, δ)−differential private.

The only thing left is to prove that this algorithm produces a hypothesis ĥ such that lossD(ĥ) ≤ α
with probability at least 1− β. Using standard generalization arguments, we know that

|freqH(h)− Pr
S∼Dm

[G(s) = h]| ≤ η

8
.
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Then, by using the property of theorem 6, we know that the stable histogram algorithm produced a
list L, which satisfies the following properties with probability larger than 1− β/2:

1. the best hypothesis h∗ is in the list;

2. Estimate of every hypothesis in the list is within the true value plus an additive error not
larger than η/8.

If these properties are satisfied, then the estimate of h∗ is not smaller than 3
4η. Thus, we can remove

every hypothesis in the list the estimate of which is smaller than 3
4η, and the number of remaining

hypothesis is not larger than 2
η . Thus, by using 5, we know the learner can learn a good hypothesis ĥ

such that lossD(ĥ) ≤ α with probability at least 1− β/3.

By applying the union bound, we know the probability of success is not smaller than 1 − β. By
simple calculation, one can show the claimed sample complexity satisfies the needs.

6 Extension

General loss functions As mentioned in the introduction part, the main setting for this paper is
binary classification. However, a recent study Jung et al. [2020] has extended the results to multi-
class classification and regression. Firstly, we could regard a regression problem as a multi-class
classification problem if we map them onto a real line and perform binning the intervals. For the
multi-class classification settings, the main idea is to set a tolerance parameter τ s.t. lossτ [y, ŷ] =
I[|y − ŷ| > τ ]. Also, the Ldim is said to be a function of τ . They have proposed an algorithm called
Color and Choose in order to prove the therem given below:

Algorithm 2 Color and Choose
1: Input: multi-class hypothesis classH ⊆ [K]X , shattered binary tree T , tolerance τ
2: Choose an arbitrary hypothesis h0 ∈ H
3: Color each vertex x of T by h0(x) ∈ [K]
4: Find a color k such that the sub-tree T ′ ⊆ T of color k has the largest height
5: Let x0 be the root node of T ′

6: Let x1 be a child of x0 such that the edge (x0, x1) is labeled as k′ with |k − k′| ≥ τ
2

7: Let T ′′ be a sub-tree of T ′ rooted at x1

8: Let H ′ = {h ∈ H|h(x0) = k′}
9: Output: k, k′, h0, x0, H

′, T ′′

Theorem 9 (Existence of a large set of thresholds). LetH ⊆ [K]X and F ⊆ [−1, 1]X be multi-class
and regression hypothesis classes, respectively.

1. If Ldim2τ (H) ≥ d, thenH contains
⌊
logK d
K2

⌋
thresholds with a gap τ .

2. If fatγ(F) ≥ d, then F contains
⌈

γ2

104 log 100
γ

d
⌉

thresholds with a margin γ
5 .

where the fat-shattering dimension with scale γ, denoted as fatγ(F), is the largest d such that F
γ-shatters a mistake tree of depth
Theorem 10 (Lower bound of the sample complexity to privately learn thresholds). Let F =
{fi}1:n ⊆ [−1, 1]X be a set of threshold functions with a margin γ on a domain {xi}1:n ⊆ X along
with bounds u, u′ ∈ [−1, 1]. Suppose A is a

(
γ

200 ,
γ

200

)
-accurate learning algorithm for F with

sample complexity m. If A is (ε, δ)-DP with ε = 0.1 and δ = O
(

1
m2 logm

)
, then it can be shown

that m ≥ Ω(log∗ n).

Then combining theorem 9 and theorem 10 leads to the conclusion that private learnability implies
online learnability.
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On the other side, the proof is similar to the proof given in this paper, where it introduces global
stability as an intermediate proof step, where the probability for global stability is O(K−d) and the
number of samples for differential private learning is O( log(1/ηβδ)nϵ ) to guarantee a (ϵ, δ) differential
private learner with probability at least 1− β. It is true and easy to extend to multi-class classification
settings. However, for regression setting, authors state that for a relaxed condition, it is not possible
to directly use the lemma proving from global stability to differential private learning. Authors have
come up with some conditions to make it realizable.

1. Either F or X is finite.

2. The range of F over X is finite (i.e., {f(x) | f ∈ F , x ∈ X} <∞).

3. F has a finite cover with respect to the sup-norm at every scale.

4. F has a finite sequential Pollard Pseudo-dimension.

A recent study has extended these situations to a more generalized case, which solves the direction
from global stability to differential private learning for the regression settings. Golowich [2021]:

Theorem 11 (Private nonparametric regression; informal version of Theorem E.1). LetH be a class
of hypotheses h : X → [−1, 1]. For any ε, δ, η ∈ (0, 1), for some n = 2O(sfatη(H))/εη4, there is
an (ε, δ)-differentially private algorithm which, given n i.i.d. samples from any distribution Q on
X × [−1, 1], with high probability outputs a hypothesis ĥ : X → [−1, 1] so that

errQ(ĥ) ≤ inf
h∈H

errQ(h) +O
(
η · sfatη(H)

)
.

Then it completes the proof from extending the binary classification problem to multi-class classifica-
tion and regression problems.

Other stability metrics An open question that is left in this paper is how the global stability metric
is related to other stability metrics in the learning theory field. Through a thorough investigation,
additional stability includes approximate Differential Privacy Dwork et al. [2006], KL-Stability
McAllester [1998], TV-Stability Kalavasis et al. [2023], f-Divergence Stability Esposito et al. [2020],
and Mutual Information Stability Xu and Raginsky [2017] etc. Connections between each pair of
stability mentioned are built Moran et al. [2023]: Although originally the authors proposed the

Figure 1: Equivalence between each pair of stability

stability including PAC-Bayes stability and statistical stability, given that PAC-Bayes stability is
equivalent to approximate DP and statistical stability is equivalent to TV stability to statistical
problems, it answers the question that the original paper proposed.
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